College for Naval Architecture

Discussion in 'Education' started by Archive, Jun 12, 2001.

  1. Archive
    Joined: Jun 2001
    Posts: 170
    Likes: 0, Points: 16, Legacy Rep: 10

    Archive Senior Member

    I am a High School senior from Indiana, and i plan to go onto college to study Naval Architecture. I was wondering if anyone had a suggestion on where i should go to study Naval Architecture and not have to spend an arm and a leg.
     
  2. Archive
    Joined: Jun 2001
    Posts: 170
    Likes: 0, Points: 16, Legacy Rep: 10

    Archive Senior Member

    Do you have an interest in a particular area of Naval Architecture (e.g. smaller yacht design, or large ship design) ?
    I trust you've already found our list here:
    http://boatdesign.net/bdn/schools/
     
  3. Archive
    Joined: Jun 2001
    Posts: 170
    Likes: 0, Points: 16, Legacy Rep: 10

    Archive Senior Member

    A late addition to the discussion I know, but the Webb Institute might be of interest (especially since you mention cost)

    Student Body: 67 undergraduates

    Faculty: 11 full-time teaching faculty; the student to faculty is 6:1. There are no teaching assistants at Webb: The faculty are the instructors in both the classrooms and laboratories, and they maintain "open door" policies in support of student success.

    Academic program: Our only major, Naval Architecture and Marine Engineering, involves several engineering disciplines, including ship design and systems engineering; marine engineering; electrical engineering; mechanical engineering; and civil/structural engineering. During Winter Work Term, students work in the maritime industry— making us the only private college of naval architecture that provides a salaried work experience during each of the four years of study.

    Job placement: Our job placement rate is 100 percent. Graduate- school placement is also high: Change Magazine has ranked Webb fifth in the nation as a source of empirical science Ph.D.s.

    Tuition: It’s true: all students admitted to Webb receive a four-year, full tuition scholarship. Fees are limited to room, board, books, and personal expenses.

    Student life: Students live on campus, a 26-acre estate with a private beach, and, of course, boats. Webb has a time-tested honor code, and a full range of student activities.

    Webb Institute was founded by William H. Webb, the foremost shipbuilder in New York City during the second half of the 19th century. Webb learned the art of shipbuilding from his father, Isaac, and took over his father’s shipping firm in 1840. Over the next 30 years, he designed and built 135 wooden vessels of all types, including fishing schooners, ferry boats, fast-sailing packets, clipper ships, and large ocean-going steamships, as well as ironclad warships for European navies.

    As shipbuilders began to replace wooden hulls with iron ones, Webb realized that a formal and detailed shipbuilding education was needed to replace the apprenticeship system that had taught him his trade. In 1894, he opened the Webb Academy and Home for Shipbuilders, with a freshman class of eight students.

    We’re bigger now, and the name has changed to Webb Institute, but the essence of the place is the same. We offer the rare opportunity to learn naval architecture and marine engineering in a college setting unencumbered by tuition.

    Curriculum
    Ship design engineering requires the study of electrical engineering, mechanical engineering (fluid mechanics) and civil/structural engineering, as well as marine engineering, ship design, and systems engineering. Few if any other engineering degrees provide this breadth of engineering education.

    Freshman Year
    First Semester—18.5 semester hours, 21 class hours
    Technical Communication — 2 semester hours, 2 class hours
    Mathematics I/Calculus I—4 semester hours, 4 class hours
    General Chemistry—3.5 semester hours, 4 class hours
    Physics I/Elementary Mechanics—3 semester hours, 3 class hours
    Engineering Graphics (CAD)—1 semester hour, 2 class hours
    Marine Engineering I/Marine Engineering Systems—2 semester hours, 2 class hours
    Naval Architecture/ Introduction to Ships and Shipbuilding—3 semester hours, 4 class hours

    Second Semester—19 semester hours, 21 class hours
    Marine Engineering II/Principles and Equipment—3 semester hours, 3 class hours
    Political Philosophy—3 semester hours, 3 class hours
    Mathematics II/Calculus II—4 semester hours, 4 class hours
    Physics II/Heat, Light, and Sound—3 semester hours, 4 class hours
    Materials Science—3 semester hours, 4 class hours
    Statics – 3 semester hours, 3 class hours

    Sophomore Year
    First Semester—18 semester hours, 21 class hours
    Humanities Elective—3 semester hours, 3 class hours
    Mathematics III/Differential Equations—3 semester hours, 3 class hours
    Numerical Methods and Computer Programming—3 semester hours, 4 class hours
    Naval Architecture II/Ship Statics—3 semester hours, 4 class hours
    Strength of Materials—3 semester hours, 4 class hours
    Dynamics—3 semester hours, 3 class hours

    Second Semester—19 semester hours, 20 class hours
    Western Literature—3 semester hours, 3 class hours
    Mathematics IV/Advanced Engineering Mathematics—4 semester hours, 4 class hours
    Physics III/Electricity and Magnetism—3 semester hours, 4 class hours
    Fluid Mechanics—3 semester hours, 3 class hours
    Marine Engineering III/Machine Design—3 semester hours, 3 class hours
    Thermodynamics—3 semester hours, 3 class hours

    Junior Year
    First Semester — 20.5 semester hours, 23 class hours
    American History — 3 semester hours, 3 class hours
    Engineering Economics — 1 semester hour, 1 class hour
    Probability and Statistics—4 semester hour, 4 class hours
    Marine Engineering IV/Machinery Systems Design—4 semester hours, 4 class hours
    Electrical Engineering I/Circuits and Electronics—3 semester hours, 4 class hours
    Naval Architecture III/Ship Resistance and Propulsion—2.5 semester hours, 3 class hours
    Naval Architecture IV/Ship Hydrodynamics—3 semester hours, 4 class hours

    Second Semester—17.5 semester hours, 24 class hours
    American National Government, 2 semester hours, 2 class hours
    Marine Engineering V – Steam Plants, 3 semester hours, 3 class hours
    Engineering Laboratory, 3 semester hours, 5 class hours
    Electrical Engineering II/Machines and Controls—3 semester hours, 4 class hours
    Naval Architecture V/Ship Structures—3 semester hours, 4 class hours
    Naval Architecture VI/Ship Design I— 3 semester hours, 5 class hours
    Thesis— .5 semester hour, 1 class hour

    Senior Year
    First Semester—17 semester hours, 22 class hours
    Ethics and the Profession—3 semester hours, 3 class hours
    Ship Vibrations— 3 semester hours, 3 class hours
    Naval Architecture VII/Ship Design II—4 semester hours, 6 class hours
    Marine Engineering VI/Marine Diesel and Gas Turbine Plants—4.5 semester hours, 5 class hours
    Thesis—2.5 semester hours, 5 class hours

    Second Semester—16.5 semester hours, 24 class hours
    Professional Presentation—2 semester hours, 2 class hours
    Naval Architecture VIII/Ship Design III—3.5 semester hours, 6 class hours
    Naval Architecture IX/Propeller Design and Vibrations—3 semester hours, 3 class hours
    Naval Architecture X/Marine Transportation—3 semester hours, 3 class hours
    Thesis— 3 semester hours, 6 class hours
    Senior Seminar—0 semester hours, 2 class hours
    Free Elective—2 semester hours, 2 class hours

    Naval Architecture I – Introduction to Ships and Shipbuilding
    This course presents an overall introduction to the marine industry, including the terminology and the technologies of naval architecture. Graphic techniques, which form the basis for the naval architect’s understanding of ship form and lines drawing, are introduced. The broad spectrum of ship types—from sailing yachts and tugs to mammoth tankers and aircraft carriers, from submarines to air cushion vehicles— are described. Basic principles of hull structure are introduced, and from this a consideration of how to build ships is presented. The final part of the course is a direct preparation for the first winter work period. Two hours of lecture and two hours of lab per week in the first semester, freshman year.

    Naval Architecture II - Ship Statics
    This introductory course in hydrostatics of ships covers buoyancy, weights, metacenters, and stability at small and large angles of heel and trim. Stability after damage, and hydrostatic considerations in dry-docking and grounding are treated. In the project part of the course, students calculate curves of form for a small vessel, with much of the work done on a computer. Cross curves of stability are also calculated for the same hull form. Two hours of class and two hours of lab per week in the first semester, sophomore year.

    Naval Architecture III – Ship Resistance and Propulsion
    This course focuses on the components of a ship’s resistance and the effects of important hull parameters, as well as the special problems of bulbous bows and hull appendages. Full-scale prediction of ship resistance by means of model tests, standard series, and regression analyses are examined and criticized. Wake fraction, thrust deduction, and propulsive coefficient are presented and the screw propeller is considered as a propulsion device. Two hours per week of lecture and a two-hour laboratory every other week in the first semester, junior year.

    Naval Architecture IV – Ship Hydrodynamics
    This course introduces water wave theory. The student applies knowledge of basic mathematics, dynamics, and hydrodynamics to the study of ship performance in the areas of maneuvering and seakeeping. Hydrodynamic theory is developed for foil shapes, and stationary and non-stationary singularity theory leads to strip-theory for ship motion. Rudder design, steering, course keeping, and maneuvering simulation are studied. We examine the response of ships to ocean waves, first to a single wave train and then to a wave spectrum using linear superposition principles. Seakeeping criteria are discussed. Critical vessel responses such as roll, slamming, deck wetness, and impact loads are also treated. Four hours per week in the first semester, junior year.

    Naval Architecture V – Ship Structures
    The course covers ship structural analysis and design using analytical and finite element techniques. Longitudinal strength of the hull and the design of a midship section are discussed, and we study hull girder bending and torsion in detail. Shear flow in a typical ship cross section is calculated. Bending and buckling of stiffened and unstiffened panels are presented. Concepts of fatigue are discussed and material properties important in structural design are reviewed. Projects are done using analytical as well as finite element methods. Four hours per week in the second semester, junior year.

    Naval Architecture VI – Ship Design I
    This course introduces the design process—from feasibility to detail. Small teams of students undertake the initial design of a small ship, with the aid of accompanying lectures on various aspects: hull sizing, weights and centers estimation, power prediction, initial stability, space and general arrangements, etc. Students apply the knowledge from previous naval architecture courses, and learn to appreciate the effects on the design process of physical and fiscal restraints, government and classification society regulations, and unique mission requirements. Oral and written design reports are required. The design problem statement for a large, oceangoing ship is developed and initial conceptual sizing is performed. This oceangoing ship design will be developed further in subsequent courses (NA VII, NA VIII, NA IX, and ME VI). One hour of class and four drawing room hours per week in the second semester, junior year.

    Naval Architecture VII – Ship Design II
    Students continue the preliminary design of a commercial ship to meet the specific set of owner requirements, developing preliminary lines and a general arrangement. Iteration of design decisions and overall ship system synergy are stressed. Damaged condition analysis and seakeeping performance analyses are performed. Two hours of class and four drawing room hours per week in the first semester, senior year.

    Naval Architecture VIII – Ship Design III
    In this course, students conclude the preliminary design of a ship from the previous semesters. We determine hull girder loads and design a midship section. Structural performance of the hull girder is analyzed. Hydrostatic, classification society, and finite element software will be used in the structural design and analysis. Material selection, structural weight, producibility, and access for inspection and maintenance will be emphasized during the design. Ship production practices are presented. One hour of class and five drawing room hours per week in the second semester, senior year.

    Naval Architecture IX – Propeller Design and Vibrations
    This course concentrates on the theory and design of the screw propeller for ship propulsion. Lifting line and lifting surface representations are used to design blade sections of a propeller for the ship developed in the preceding ship design courses. Cavitation and blade strength are checked, and the propeller drawing is prepared with the aid of computer graphics. Students consider modes of ship hull vibration, propeller-induced exciting forces, and methods of reducing hull vibrations. Three hours per week in the second semester, senior year.

    Naval Architecture X – Marine Transportation
    This course gives an overview of marine transportation systems, including tankers, breakbulk, drybulk, and container lines from a business standpoint. The fundamentals of maritime economics and financial management are presented, including a fleet analysis based on the ship design project begun in the Naval Architecture VI course. Case studies and a research paper are the primary learning tools. Management techniques and linear programming are included. Three hours per week in the second semester, senior year.

    Marine Engineering I – Marine Engineering Systems
    This course provides an overview of the marine engineering systems that support a ship’s mission requirements. These systems include: propulsion, steering, electrical power general and distribution, compressed air, hydraulics, fuel oil, lubricating oil, heating and cooling, cargo handling, and many others. The course includes several field trips to visit ships and marine engineering laboratories. Two hours per week in the first semester, freshman year.

    Marine Engineering II – Marine Engineering Principles and Equipment
    In this course, the focus shifts from systems to individual components. The principles of energy conversion are introduced. Coverage of components includes diesel engines, boilers, steam and gas turbines, gearing, pumps, heat exchangers, air compressors, piping and valves, etc. The course includes several field trips to visit ships and marine engineering laboratories. Three hours per week in the second semester, freshman year.

    Marine Engineering III – Machine Design
    This course involves the design of specific machine elements such as shafts, gears, couplings, clutches, brakes, screw fasteners, and joints. It applies the theory from the Strength of Materials course to practical problems in machine design. In addition, dynamic and fatigue analysis are introduced. A team project over the whole semester integrates all elements into the design of a single machine. Three hours per week in the second semester, sophomore year.

    Marine Engineering IV – Machinery Systems Design
    This course covers the design of shipboard machinery systems, building on the introduction of Marine Engineering II and the students’ examination of systems while on board ships. Students use principles of fluid flow to design pumps, piping and hydraulic systems. An introduction to heat transfer is given, followed by heat exchanger design. The course covers heating, ventilation, and air conditioning design, and the final part of the course introduces monitoring and control systems, using analog/ digital conversions, programmable logic controllers, and feedback controls. Throughout all of the design work students, consider the relevant regulatory requirements. Four hours per week during the first semester, junior year.

    Marine Engineering V – Marine Steam Plants
    Steam plants are analyzed in principle and practice, beginning with the development of a heat balance. The effects on the balance of alternative criteria and sub-systems are examined. Selected system components are analyzed at various operating conditions. A laboratory experiment and, usually, a ship visit, are included in the course. Three hours of class per week in the second semester, junior year.

    Marine Engineering VI – Marine Diesel and Gas Turbine Plants
    This course begins with an analysis of diesel machinery. Alternative engines are selected to correlate with the Ship Design course, and auxiliary systems, machinery lists, and arrangement drawings are prepared. We review gas turbine principles, characteristics, and installation aspects, and undertake economic analysis of these and other alternatives. Field trips are included. Five hours per week in the first semester, senior year.

    http://www.webb-institute.edu/

    Glen Cove, NY
     
  4. Jeff
    Joined: Jun 2001
    Posts: 1,369
    Likes: 66, Points: 58, Legacy Rep: 923
    Location: Great Lakes

    Jeff Moderator

    "The Education of a Naval Architect"

    In the April/May 2002 issue of Professional Boatbuilder which just came out (Number 76) there is a nice article on the Webb Institute written by Paul Lazarus (pp 36-47).
     
  5. Guest

    Guest Guest

    schools

    Hello,
    My name is Porter Bratten, currently I am starting my freshman year at the U.S. Coast Guard Academy. I know beyond a doubt that I want to make wooden boat building and designing my career, so I am considering transferring after a semester to another college where I could pursue my dreams more easily. I was wondering if you could offer any advice regarding where I should go for college, academic major, what I should do during my summers, or any other decisions that could affect my career as a wooden boat builder. I am interested in small craft design. Thank you very much.

    Porter Bratten
     
  6. Guest

    Guest Guest

    it's cool where can i get the address i like to go there!
     
  7. Guest

    Guest Guest

    CAD

     
  8. ErikG
    Joined: Feb 2002
    Posts: 397
    Likes: 12, Points: 0, Legacy Rep: 344
    Location: Stockholm, Sweden

    ErikG Senior Member

    Err Guest?

    And with this quote from a long time ago you wish to add what?
    Just curious...
    :confused:
     
  9. L.DOSSO
    Joined: May 2003
    Posts: 71
    Likes: 0, Points: 0, Legacy Rep: 9
    Location: FRANCE

    L.DOSSO Junior Member

    I am very unglad to see that webb inst.do advertising on our site.Concerning jobs,I do not think any school can honnestly Guaranty a job for the graduate.It doesn't exist.Finally,what about the price.Is it as wonderfull as all what is depicted above(course syllabus).Endly again,this is boat design.net and there is an other site for N.A. or aspiring MARINE Enginneers
     
  10. Jeff
    Joined: Jun 2001
    Posts: 1,369
    Likes: 66, Points: 58, Legacy Rep: 923
    Location: Great Lakes

    Jeff Moderator

    Just to clarify, I don't think the Webb Institute posted anything in this thread. The old posts by "Archive" are those which were imported from our old software and unfortunately the usernames didn't come with those posts from 1999-2001 when we upgraded to vBulletin.

    As far as boat design / yacht design vs. naval architecture and marine engineering, while it's certainly true there are sites which are focused differently than ours, I'm not sure you can draw such a hard line between them when it comes to schooling. Many of the working professionals who have given advice to those seeking an education have have suggested more technical naval architecture and marine engineering programs because of the greater employability upon graduation.
     
  11. L.DOSSO
    Joined: May 2003
    Posts: 71
    Likes: 0, Points: 0, Legacy Rep: 9
    Location: FRANCE

    L.DOSSO Junior Member

    You're right ,Jeff,I had been excessive in telling my thoughts.
     
  12. CDBarry
    Joined: Nov 2002
    Posts: 739
    Likes: 26, Points: 28, Legacy Rep: 354
    Location: Maryland

    CDBarry Senior Member

    Webb

    I am not a Webb grad, but:

    1) The tuition at Webb is zero. Room, board, and books, etc. must be paid, but they have financial assistance available.

    2) You may not be guaranteed a job, but Harvard law school doesn't guarantee jobs either, but it is probably reasonable to assume you have a pretty good shot. Webb is at that level of respect.

    3) Sorry, but naval architects can be yacht designers too, and frankly, these days, a Webb degree is a pretty good qualification for yacht design.
     
  13. ClarkT
    Joined: Jun 2003
    Posts: 108
    Likes: 2, Points: 0, Legacy Rep: 31
    Location: New Orleans

    ClarkT Senior Member

    FYI...Webb is not the only N.A. school in the country.
    There are other excellent programs at schools that have social life as well as excellent academics. Webb is famous for it's interdormatory beer funneling teams.

    U. Michigan - an exceptional program at a school that also has a well ranked sailing team, and a football team with CHEERLEADERS (lest we forget what college is really about)

    University of New Orleans - the largest program in the country. It's in New Orleans! The weather is nice for sailing year round, and there are only 30 boat and ship design firms/yards within 45 minutes of the school. No...you are not guaranteed a job, but.....

    Florida (F.I.T.?) has a marine design program. Less engineering and more styling from what I understand, but it seems well tailored to boat designers. Did I mention that you can go to IBEX without getting on a plane. Oh...there are also some beaches down there.

    Hope this lends you some perspective.
     
  14. CDBarry
    Joined: Nov 2002
    Posts: 739
    Likes: 26, Points: 28, Legacy Rep: 354
    Location: Maryland

    CDBarry Senior Member

    ABET

    Accredited US programs in NAME are listed at www.abet.org.

    There are also programs in Canada. I don't know if ABET covers them.
     

  15. Smath83
    Joined: Apr 2008
    Posts: 12
    Likes: 0, Points: 0, Legacy Rep: 10
    Location: U.A.E

    Smath83 Junior Member

    Dear Sir,
    We are currently looking to employ talents draftsman/nAval Architects who wish to work in a well set up company i the U.A.E since the past 30 years and now expanding due to rise in demand.
    If you have any young briliant talents as I am really keen on hiring them.
    Best Regards
    SKM
    Sunil K Mathew

    Send CV- designriv@gmail.com
     
Loading...
Forum posts represent the experience, opinion, and view of individual users. Boat Design Net does not necessarily endorse nor share the view of each individual post.
When making potentially dangerous or financial decisions, always employ and consult appropriate professionals. Your circumstances or experience may be different.