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Abstract    A  global optimization algorithm i s
introduced which generalizes Kushner’s univariate
search [1].  It aims to minimize the number o f
probes (function evaluations) required for a g i v e n
confidence in the results.  All known p r o b e s
contribute to a stochastic model of the underly ing
“score surface”; this model is interrogated for the
location most likely to exceed the current result
goal.  The surface is assumed to be fractal, l e a d i n g
to a piecewise Gaussian model, where the local
regions are defined by the Delaunay triangulation o f
the probes.  The algorithm balances the c o m p e t i n g
aims of 1) sampling in the vicinity of known p e a k s ,
and 2) exploring new regions.  Preliminary tests o n
a standard 2-d search problem are very encouraging.

I.  INTRODUCTION

Global search can optimize parameters which nonlinearly
affect the output of a model, such as with logistic regression,
or the intermediate weights of an artificial neural network
(ANN).  Global search is also called for when the fitting crite-
rion, or score function, is anything other than a few special
accuracy metrics, such as minimum squared error (MSE, L2)
or least absolute deviations (LAD, L1).  For instance, the cost
of errors can be asymmetric (e.g., a classification "false
alarm" can be much less costly than a "false dismissal") or, a
range of estimated values might correctly lead to the same
action (e.g., “buy”), or the true score function might include
objectives (low cost, high safety, etc.) other than accuracy .
Arguably, linear L2 models are employed so extensively not
because their assumptions are so often appropriate, but due to
their strong mathematical tractability and the mass of tools
available as a result.  The significant benefits of linear models
should only reluctantly be abandoned, but once set aside, the
resulting freedom to design a score function to match the use
of the model should be exploited.  This requires global search.

II.  MODEL-BASED SEARCH

Global optimization can be likened to depth-sounding (Fig.
1).  One probes for the depth (evaluates the score function) at
a location (set of parameter values) in pursuit of the deepest
spot (global minimum).  Model-based searches build up a
picture of the ocean floor using probe results, to home in on
the goal as quickly as possible, and to have some confidence
that a (reasonably) deeper point is not "out there somewhere".  

The surface model is interrogated for a location to probe.
Should analytic solutions prove too difficult, internal model
search can be employed; that is, the model (as a rapid surro-
gate for the true score function) can be sampled at candidate
probe locations to determine the most promising one.  New
results update the model, and the cycle continues.

The algorithm introduced here attempts to generalize an
elegant 1-dimensional stochastic method [1][3] inspired by the
work of Stuckman and colleagues [4]-[7].  Recent refinements
are believed to lead to a more theoretically consistent (and
hence more efficient) Rd algorithm, requiring drastically fewer
function evaluations than conventional searches.  (It can be
said to "think" more but "run" less.)  The search is capable of
discovering multiple extrema whether or not the function is
differentiable and, as it builds on known results, can be paused
and restarted with no waste of probing effort.  A confidence
measure is provided, approximating the probability that the
final answer can be improved upon.  Lastly, the procedure can
be parallelized, with nearly linear speed-up anticipated.  This
paper describes Kushner's 1-dimensional method, important
later generalizations, and the new algorithm, known as Global
Rd Optimization when Probes are Expensive (GROPE).1

III.  KUSHNER'S 1-DIMENSIONAL SEARCH

Kushner's optimization method for one dimension models the
score surface, y , as a random walk in x ; that is, as a
Brownian motion or Weiner process, where the y value at a
point x is Gaussianly distributed with respect to neighboring
points.  An example “drunkard’s walk” is shown in Fig. 2;
the path is that of one moving forward at a constant rate, but
staggering random amounts to each side.  The stagger distri-
bution is Gaussian, and for a time series with discrete steps,
yt+1 can be shown to be N(yt, s2).  That is, the mean value
for the next point is the current point; no information about
the direction of the step is available.   Knowledge of how the
curve got to yt is of no use; the distribution is memoryless,
or Markovian, and the only values affecting the estimator of
an unknown point are those of its nearest neighbors in x.

                                    
1Earlier searches:  Guided Random Optimizer of Performance Error [8] &
Global Regression of Probe Evaluations [9].  Some acronyms never die!
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Fig. 1:  Global Optimization as Depth-Sounding (after [2])



The random walk is descriptive of many processes, from
the Brownian motion of particles suspended in a liquid to the
price history of the "S&P 500" stock market index.  As a
model, it has the advantage of being fractal or locally rough
(it is nowhere differentiable) but regionally smooth.  Thus, it
is possible, though unlikely, for a large jump in y to occur
between points close in x but, most near differences will be
small, and the surface is broadly “rolling” -- a representation
capable of fitting many practically occurring functions.

A further practical advantage of the representation is its
tractability.  In the case of no noise, the Markovian property
implies that the conditional expected value of y at a position
x between two known points a and b, is the linear interpolant

m(x | x,y) = ya + p(yb - ya) (1)

where the proportion p is 
x-xa
xb-xa

 .  Also, the variance condi-

tioned on all previous results is a quadratic function of the
distance from the interpolating bounds

s2(x | x,y) = cp(1 - p)(xb - xa) (2)

for some slope factor, c (the mean squared variation in y as x
changes).  (Note that s2  has no other dependence on the y
values.)  This variance grows linearly with distance when
only one neighbor is known (while the mean remains con-
stant at the edges).  When noise is present (i.e., probes at the
same location can return different values), the representation is
only slightly adjusted [3]:  m(x) does not go through the
samples exactly, but shrinks toward neighboring samples, and
s2(x) is positive, not zero, at the probes.

Kushner [1] solved for the probe location most likely to
exceed the current best value by a fixed amount  (and
suggested this magnitude could change with time, predating
the similar strategy of "temperature scheduling" which directs
simulated annealing [21]  A slightly different perspective [7]
is to seek the point most likely to exceed a given result goal,
yg; i.e., to find the x maximizing

Pr[yx > yg | x,y] = 1 - F[ 
yg!-!m (x |x ,y)

!s(x |x,y)   ] (3)

This is depicted in
Fig. 3 for a one-dimen-
sional line segment.
Points close to xb  have
the advantage (in putting
probability mass across
yg) of starting closer;
yet, locations in the
middle of the segment
step farther.  Thereby, the

conflicting aims of exploration and exploitation are balanced.
The goal-exceeding objective is also appealing when a natural
bound is available, whether from known or theoretical limits
(e.g., zero error) or, say, a competitor’s results!  When a value
is not available however, the algorithm can employ the usual
“carrot on a stick” approach, and strive to beat the current best
result by a (possibly dwindling) amount.

As F is monotonic, we may maximize (3) by minimizing
its argument, (or square, to accommodate (2)).  Substituting,
this translates to finding the proportion p which minimizes

A(p) = 
[yg! - !(y a!+!p(yb! - ! ya)!)]2

cp(1!-!p)(xb! - ! xa) !  (4)

Solving ∂A
∂p   = 0 reveals that the optimal location depends

only on the relative distance of the end points to the goal p* =
∆a

∆a+∆b  where ∆a = yg - ya, ∆b = yg - yb.  (Note that the
slope parameter, c, has no influence on p*, and may be
dropped.)  A(p*) is a distance monotonic with the segment's
maximum conditional probability of containing a location
exceeding the goal.

The 1-dimensional algorithm can be summarized:
1) Probe the two bounds of the search space.2
2) Calculate the best sampling location, p*, for the line

segment, and insert that location, x*, in an ordered list
according to its distance estimate, A(p*).

3) Remove the top member of the list and probe at x,
breaking the line segment (a,b) into (a,x) and (x,b).

4) Repeat steps 2 and 3 (with two segments for step 2)
until the goal is exceeded, resources are exhausted, or
the probability of better results is acceptably low.

Fig. 4 illustrates the algorithm for the data of Fig. 2.

After each probe, the list of candidate probes increments,
as one segment is removed and two take its place.  Unless the
goal changes, in which case the optimal location for each
segment must be reevaluated, only the p* locations for the
two new segments must be computed.  (And it can be shown
that their two distances are identical; e.g., Fig. 4b.  In that
example, ties were broken randomly.)  When results are far
from the goal (at the beginning of the search), the variance
component of (4) dominates and locations relatively midway
between known probes are preferred.  When the best probes
                                    
2The initializing probes can be inside the bounds (for three line segments
initially).  However, probes may later be requested the edges of the legal
space anyway, since s2 grows so rapidly beyond the outermost probe.
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Fig. 2:  An Example Random Walk:  Y = ıÛX(t) ,  X=N(0,1)
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score near the goal, further probes in their vicinities are called
for.  This mechanism performs the tradeoff between the
conflicting search aims of 1) homing in on the extreme of a
promising area, and 2) sampling unknown regions.

The search is terminated if either the goal or the probe
limit is reached.  Alternately, the slope parameter c can be
estimated from the results, and used to compute the probabil-
ity, according to the underlying model, that some remaining
location could exceed the goal.  Similarly, [4] employs ĉ , the
maximum likelihood estimator (MLE) of c, and the closest
candidate probe, to get the probability that the next guess will
do the job, stopping when this value is very small, e.g. 10-6.
However, as each probe is independent under the random walk
model, one may calculate the joint probability that one of the
N current candidates could exceed the goal

Pr[$ i ' y(pi) > yg | p, A(p)] = 1 - ’
i!= ! 1

N
!F [ A(pi)] (6)

where ĉ  is used in A (4).  A more reliable analysis of joint
probability would be predictive [10], and employ the full
distribution of c.  Such an estimator weights each possible c
value by its relative effect on the likelihood of the data,
L(x|c).  In place of A(x) with  ĉ , one would use

ıÛ

C !
A(x,c)p(c|x)∂c , where p(c|x) = L(x|c)

ıÛ

C ! !
L(x|c)∂c

 (7)

This is superior to the estimative technique of (6), which acts
as if all the mass of the likelihood were on the MLE mode, ĉ 
= sup(L(x|c)).  Computation is substantially facilitated by
using conjugate priors for the parameter distributions [10].

IV.  EXTENSION TO MULTIPLE DIMENSIONS

The key difficulty in expanding Kushner's algorithm from R1

to Rd -- and perhaps the reason the method saw little use for a
generation -- is the extension of the random walk model into a
random field (for which there are even competing theoretical
definitions in the literature [11]).

The multi-univariate method [4] avoids the issue of
random fields, and employs the one-dimensional algorithm
along the line segments connecting all pairs of probes (or a
subset of K-nearest neighbors for each probe, where K jumps
an order of magnitude when the probe is the current best).
However, such a procedure can ignore a probe intermediate to
another pair and, more importantly, is silent about function
values everywhere except on the connecting line segments.

To cover the search space, the region within the convex
hull of the probes can be tessellated (divided into space-filling
disjoint regions) into a set of simplices.  In Rd, a simplex is
a convex polyhedron composed of d+1 vertices (i.e., a triangle
in two dimensions; a tetrahedron, in three).  If a simplex
subdivision approach is employed (e.g., [12]), a new probe
divides its surrounding simplex into d+1 smaller simplices
(defined by the new point and each face of the old simplex),
leaving all other regions intact.  It would be better, however,
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to update the entire tessellation in a manner maintaining some
optimality property, such as local equi-angularity [13] in
which small angles in triangles are avoided.  The unique set of
connections with this property in the plane is the Delaunay
triangulation [14].  (However, in three and higher dimensions,
this triangulation does not necessarily maximize the
minimum solid angle [15].)

The Delaunay triangulation is the dual of the Voronoi (or
Dirichlet or Thiessen) tessellation, wherein regions are
partitioned according to the nearest neighbor rule.  That is, all
the points within a region are closer (by L2) to the same
known probe than they are to any other.  Another property of
the triangulation has long been known for low dimension
[16], but only recently proven in general [17]:  the
circumscribing sphere of each simplex is empty; i.e., the only
triangulation in which the sphere intersecting the vertices of a
given simplex contains no other point, is the Delaunay.

The optimization algorithm of [6] employs Delaunay
triangulation to tessellate the search space, but scores each
candidate simplex with a heuristic, nonparametric metric:  the
product of the ranks of the vertices divided by its content, or
“hypervolume” [5].  The next probe is taken within the
winning simplex, at the weighted average location of its
vertices (where the weights are the inverse relative ranks of
the probe scores).  Incorporation of Delaunay triangulation
improved the ranking method, causing the scatter plot of
search points to better correspond to the contour diagram of
each objective function tested [6].  However, use of the
ranking, coverage, and weighting heuristics lead to a technique
having little in common with Kushner’s stochastic algorithm.

Building on the ideas of tessellation and goal-direction
however, a more straightforward generalization is possible:
use a    linear        interpolation    of the response values at the
Delaunay vertices to define the conditional expected values
inside a simplex, and a    quadratic         polynomial    for the
conditional variance, constrained to agree with Kushner’s
quadratic variance curve along each 1-dimensional simplex
edge.  The expectation is thus a piecewise planar surface --
resembling facets of a gem (or, the recent hinging hyperplane
modeling technique [18]).  An example 2-dimensional
Delaunay interpolation surface is illustrated in Fig. 5.

The relative variance “canopy” arches over the simplex as
shown in Fig. 6, from lows at locations with known values,
to an interior peak far from the vertices.  This variance can be
defined by the (unique) complete quadratic polynomial in d
variables which conforms to the univariate equations along

the Ë
Ê

¯
ˆd+1

2   edges of the simplex (and is undefined outside
these bounds).  These variance constraints are imposed since a
hyperplane defined by the vertex values is used for the
expectation.  The variance can be viewed as a measure of
uncertainty about the mean, so their methods of estimation
must be linked.  Along an edge, only the pair of connected
vertices affect the conditional mean value3 (as with Kushner’s

                                    
3This 1-dimensional property can have the side-effect of ignoring the
single nearest known probe, as can happen (for a “thin” simplex near the

1-dimensional method); therefore, the edge constraints on
variance are necessary for this generalization of the algorithm.

Fig. 6:  Example Variance Canopy

The edge constraints are also sufficient.  There are  Ë
Ê

¯
ˆd+2

2  
parameters in a second-order polynomial in d variables. (In
general, the complete polynomial with maximum power p

has Ë
Ê

¯
ˆd+p

p   terms).  Each of the Ë
Ê

¯
ˆd+1

2   edges of the simplex
contributes one constraint -- say, the value of the variance at
the midpoint of the segment (which, for a given c, is defined
by its length (2)).  The remaining d+1 constraints are provided
by the vertices of the simplex, for which the variance is a
minimum fixed value (zero for noiseless probing).  Since
none of the edges are collinear (as demonstrated by the exis-
tence of a circumsphere for the simplex), the exact match of
constraints and degrees of freedom means the polynomial
solution will be unique and have zero error.  (Still, in
practice, thin triangles on the convex hull can lead to nearly
collinear edges.  Thus, robust regression techniques (e.g.,
singular value decomposition) which remove near-singulari-
ties are required.

                                                               
convex hull) when estimating the values of an edge segment near a third
vertex.

Fig. 5:  Triangular Facets Interpolate Function Surface



The locations and scores of the d+1 probes of each simplex
thus define the equations for the linear expectation, m(x), and
quadratic variance, s2(x ), of its interior (which may be
obtained via linear regression).  In one dimension, the optimal
interior location, x*, for each simplex is known analytically
(5).  This can also be shown to be the case for two
dimensions, but the solution is surprisingly complex.  For
multidimensional applications, an easier approach is to
perform an internal search of the function to be minimized

A(x) =  
(yg!-!m(x) )2

s2(x)
  (8)

This squared distance function is positive, smooth, and
(believed to be) unimodal -- allowing any of several local
minimizers to be employed.  (However, A() is not defined
outside the simplex, and explodes at the vertices, so care must
be taken at the boundaries.)

V.  THE GROPE ALGORITHM

The search is initialized by probing d+1 points from the
convex hull defining the space, or by absorbing previous
results.  (As all probes contribute to the model locally, the
program can pick up where a prior run left off.)  Then, until
the goal, yg, is reached, resources run out, or the probability
of improvement is sufficiently slight (7), iteratively:

1. Construct/Update the Delaunay triangulation, removing
candidate probe locations for obsolete simplices from
the ordered list.

2. For each    new     simplex j:
a) Solve for mj(x) given vertices.
b) Solve for s2j(x) given vertices and edges.
c) Find the best probe location, x*j, for the simplex

by minimizing (8) (the squared, standardized distance
to the goal, Aj(x)).

d) Insert this candidate probe location into a list
ordered by Aj(x).

3. If locations on the intended convex hull remain
unknown, probe there; otherwise, pop the head of the
list, and probe at that location.

Steps 1 and 2c, the re-triangulation and the internal search
of new simplices, are most affected by the number of probes,
N, and problem dimension d.  The added overhead is rather
great (compared even to some other model-based searches).
However, whenever probe computations are not trivial, that
time should be more than compensated for by the algorithm’s
judicious choice of locations.  (Time saved not “running”
exceeds extra time spent “thinking”).  For example, in [8]
each probe for a guidance or control application consisted in
running a full computer simulation with a new set of
parameters.  Such a task can easily take minutes per probe on
a workstation (and engender, in the early morning hours, a
visceral distaste for senseless search methods!).

If q processors are available (and if the application permits)
q - 1 probes may be removed from the head of the list and
evaluated in step 3.  The last processor could update the
Delaunay triangulation, given the locations of the new
probes, as the triangulation does not depend on their results,

y.  Of course, the problem addressed should be reformulated
to:  find the best set of probes such that one is likely to
exceed the goal.  However, this simple q-at-a-time method
should provide near-linear speedup for a common type of hard
problem, where many regions of the domain must be explored
(in which case the probes may as well be simultaneous).

VI.  EARLY EXPERIMENTAL RESULTS

A 2-dimensional prototype of GROPE has been prepared,
using a recent program for planar Voronoi tessellation [19]
(mapped into Delaunay triangles), and the downhill simplex
method of function minimization [20] for the internal model
search as programmed by [21].  The test function was the
bimodal “Hosaki” equation [22]

(1 - 8x1 + 7x12 - 
7x13

3   + 
x14
4  ) x22 exp(-x2) (9)

illustrated in Fig. 7.  The global minimum for x1 e [0,5], x2
e [0,6] is -2.345 at x = (4,2).

For testing purposes, nearness to the final answer was the
stopping criterion.  This is not usually possible for “field”
applications, but allowed comparison with two random
methods [22][23], and a promising recent model-based search
[24] (Table 1).

Table 1:  Hosaki 2-d Function Results
                                   Method                                             #Probes to Solution        

Modified Random Creep [22] 4 5 1
Adaptive Random Search [23] 8 3 0

Sequential Design for Optimization 55 (constant param.)
[24] 36 (linear param.)

GROPE (2nd trial) 12 (goal = -3.0)

The first GROPE run employed the known minimum as
the goal, yg, but crept too cautiously toward the final
location, and failed to converge.  The cautious approach to the
minimum suggested that local probing was overly preferred to
exploration of new areas; i.e., that the role of variance was
too low relative to that of expectation.  Accordingly, a more
remote goal, yg = -3, was set (though, of course, still halting
at ymin), leading to much improved results:  only    12       prob      es   .
The final triangulation of this second run is pictured in Fig.
8, where the vertices of the Delaunay triangulation are known
probes, each “x” represents a candidate probe location for its

Fig. 7:  Hosaki Function



triangle, and the “.” denote discarded candidate locations (due
to dissolution of the surrounding triangle), and “-”, the
position of the global minimum.  The 11th probe value was -
2.344.  The number of triangles (and thus candidate locations)
increases by two after each probe -- a property of the 2-d
Delaunay triangulation.

VII.  POTENTIAL IMPROVEMENTS

Both GROPE runs in the example problem were initialized
by probing the four corners of the search domain.  Such
rectangular bounding requires 2d initial probes, which can be
expensive in high dimensions.  Furthermore, these first
probes are taken in areas least expected to produce useful
results:  the domain boundaries.  A minimum of d+1 probes
(an initial simplex) can define the domain; yet, to roughly
match the content of the hyper-rectangle, these probes would
have to be even more extreme in location.  It is convenient
for the algorithm to have the bounds set initially, and always
be performing a type of interpolation operation.  But instead,
perhaps some type of Bayesian technique, with distributions
reflecting the desirability of probing in the center of the
region, could be employed.  This could restrain, to an adjust-
able degree, the otherwise linearly increasing variance beyond
the outermost probe towards the bounds.

A simpler improvement, as suggested by the example
application, would be to adjust the single current parameter of
the algorithm (yg) with time and/or performance -- a “relaxa-
tion” technique similar to other methods.  Further research
may show that a good goal scheduling strategy can be inferred
for a problem from metrics of its ongoing results -- e.g., the
distribution of probe results and its extreme, the (estimated)
smoothness of the score surface and its variability, and the
distribution of simplex content.

As evidenced by the first trial, regression singularities can
occur when fitting the variance of long “thin” triangles near
the convex hull having nearly collinear edges.  Use of a
robust fitting method (e.g. singular value decomposition with

removal of small eigenvalues) is being investigated to remove
this symptom of “overfit”.

VIII.  CONCLUSIONS

GROPE is a novel, efficient, model-based stochastic Rd
optimizer, in large part generalizing Kushner’s elegant
univariate method.  For low- to medium-dimensioned
problems (1-12 variables, say), GROPE should be more
accurate in many fewer probes than conventional methods, and
provide an interpretable confidence in the outcome.

REFERENCES

[1] Kushner, H.J. (1964).  A New Method of Locating the Maximum of
an Arbitrary Multipeak Curve in the Presence of Noise, Journal of
Basic Engineering, March,: 97-106.

[2] Elder, J.F. IV, M.T. Finn (1991).  Creating ‘Optimally Complex’
Models for Forecasting.  Financial Analysts Journal, Jan/Feb: 73-79.

[3] Kushner, H.J. (1962).  Stochastic Model of an Unknown Function,
Journal of Mathematical Analysis and Applications 5: 150-167.

[4] Stuckman, B.E. (1988).  A Global Search Method for Optimizing
Nonlinear Systems, IEEE Trans. SMC 18, no. 6: 965-977.

[5] Perttunen, C.D., B.E. Stuckman (1990).  The Rank Transformation
Applied to a Multiunivariate Method of Global Optimization, IEEE
Trans. SMC 20, no. 5: 1216-1220.

[6] Perttunen, C.D. (1991).  A Computational Geometric Approach to
Feasible Region Division in Constrained Global Optimization, Proc.
IEEE SMC Conf., Charlottesville, Virginia, Oct. 13-16.

[7] Stuckman, B.E., P. Scannell (1991).  A Multidimensional Bayesian
Global Search Method which Incorporates Knowledge of an Upper
Bound, Proc. IEEE SMC Conf., Charlottesville, Virginia, Oct. 13-16.

[8] Elder, J.F. , R.L. Barron (1988)  Automated Design of Continuously-
Adaptive Control:  The “Super-Controller” Strategy for Reconfigur-
able Systems, Proc. Ame. Control Conf., Atlanta, GA, June 15-17.

[9] Elder, J.F. IV (1991)  Global Regression of Probe Evaluations, 3rd
International Workshop on Artificial Intelligence and Statistics
(extended abstract), Ft. Lauderdale, Florida, Jan. 2-5.

[10] Aitchison, J., I.R. Dunsmore (1975).  Statistical Prediction Analysis.
Cambridge Press, London.

[11] Adler, R.J. (1981).  The Geometry of Random Fields.  Wiley, NY.
[12] Groch, A., L.M. Vidigal, S.W. Director (1985).  A New Global

Optimization Method for Electronic Circuit Design, IEEE Trans.
Circuits and Systems 32, no. 2.

[13] Lawson, C.L. (1972).  Generation of a Triangular Grid with Appli-
cation to Contour Plotting, CIT Jet Propulsion Lab., Tech. Mem. 299.

[14] Sibson, R. (1978).  Locally Equiangular Triangulations, Computer
Journal 21, no. 3: 243-245.

[15] Joe, B. (1989).  Three-Dimensional Triangulations from Local
Transformations, SIAM J. Sci. Stat. Com. 7: 514-539.

[16] Miles, R.E. (1970).  On the Homogeneous Planar Poisson Point
Process, Mathematical Biosciences 6: 85-127.

[17] Rajan, V.T. (1991).  Optimality of the Delaunay Triangulation in Rd,
Proc. 7th ACM Symposium on Computational Geometry: 357-363.

[18] Breiman, L. (1991).  Hinging Hyperplanes for Regression,
Classification, and Function Approximation, Tech. Rpt. 324, Dept.
Statistics, UC Berkeley, CA.

[19] Tipper, J.C. (1991).  FORTRAN Programs to Construct the Planar
Voronoi Diagram, Computers and Geosciences 17 no. 5: 597-632.

[20] Nelder, J.A., R. Mead (1965).  A Simplex Method for Function
Minimization, Computer Journal 7: 308-313.

[21] Press, W.H., B.P. Flannery, S.A. Teukolsky, W.T. Vetterling (1988).
Numerical Recipes in C.  Cambridge Univ. Press, New York.

[22] Bekey, G.A., M.T. Ung (1974).  A Comparative Evaluation of Two
Global Search Algorithms, IEEE Trans. SMC 4: 112-116.

[23] Pronzato, L., E. Walter, A. Venot, J.F. Lebruchec (1984).  A
General Purpose Global Optimizer:  Implementation and
Applications, Mathematics and Computers in Simulation 26: 412-422.

[24] Cox, D.D., S. John (1992).  A Statistical Method for Global
Optimization, Tech. Report, Dept. Statistics, Univ. Illinois
(Champaign), April.

X

X

X
X

X

X

X

X

X

XX
X

XX
X
_o

Fig. 8:  Triangulation after near-Final (11th) Probe


