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X1. The Wave-Resistance of a Ship.
By J. H. Michell. 1 (Russian)

THE object of this paper is to give a general solution of the problem of the waves produced by a ship of given
form moving with uniform velocity in an inviscid liquid, and to determine the consequent wave-resistance to
the motion of the ship. The only assumption made as to the form of the ship is that the inclination of the
tangent plane at any point of its surface to the vertical median plane is small. This condition is not satisfied
near the bottom of the middle body of a modern ship, but it seems probable that this will not much affect either
the waves produced or the resistance, for the waves arise rather from the parts at the bow and stern at which the
tangent to the surface is inclined to the direction of the ship's motion, than from the approximately cylindrical
middle body. The neglect of friction is probably of little consequence. The eddying water close to the side will
no doubt slightly alter the virtual shape of the ship, but the change in the inclination of the virtual tangent
plane, on which the wave—making depends, will, almost certainly, be very small. Further, the effect of viscosity
in destroying the waves produced by the bow will modify to some extent the interaction of bow and stern
waves; but, seeing that it is the waves of length comparable with that of the ship which chiefly give rise to the
resistance, the effect must be small. The conclusion is, therefore, that the course followed by W. Froude, of
considering frictional resistance and wave-resistance separately and adding the two, will probably give a close
approximation to the truth.

A summary of the experimental work on this question, as well as a sketch of (he theoretical work of Russell,
Rankine, and the two Froudes, is given in White's interesting 'Manual of Naval Architecture' (1894), chap. xi.
Recent mathematics on the subject has been devoted chiefly to explaining, in a general way, the interesting
wave—patterns observed, but exception must be made of the papers of Sir W. Thomson (Lord Kelvin),
Phil.Mag. (1886—7), in which the critical speed of a canal boat, examined experimentally long before by
Russell, was mathematically discussed. Reference may be made to Lamb's 'Hydrodynamics' (1895), chap, ix.,
and to Sir W. Thomson's 'Popular Lectures on Navigation' (1891), p. 450, for the discussion of wave—patterns.

None of these writers has, however, considered the waves produced by an actual ship, and the present paper is
intended to supply the necessary investigation. The formula obtained for the wave—disturbance is rather
complex, but that for the resistance is much simpler, as the most complicated term in the former represents a
local disturbance not leading to any resistance in an inviscid liquid. There will therefore be no difficulty to
those who have the necessary apparatus in making comparisons with experiment. As to general results, for
deep water the theory leads to a resistance which increases with the velocity, in an oscillating manner, to a
maximum and then decreases to zero as the velocity is indefinitely increased. That the resistance is an

oscillating function of the velocity has been experimentally found by Mr. W.Froude and his son Lﬂ—, to whom
also we owe the general explanation in terms of the interference of bow and stern waves. But the ultimate
vanishing of the resistance has not, so far as I know, been anticipated. From general considerations it is clear
that, so far as the wave—form is concerned, the effect of increasing the velocity is the same as that of decreasing
the acceleration of gravity, and, if gravity vanishes, there is no propagation of waves; but this is not quite the
theorem to be obtained.

Fig. 1
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Take the vertical median plane of the ship as y = 0, and the surface of the undisturbed water as z = 0, the axis
Ox being in the direction of motion of the ship and Oz vertically downwards. We may suppose the ship at rest
and the water moving backwards with uniform velocity v apart from the wave—disturbance. The motion is
assumed steady and the velocity potential written —vx + ¢@. Since the inclination of the ship's surface to the
plane y = 0 is everywhere small, ¢ will be small, and we shall neglect the squares of the velocities due to ¢ in
comparison with their first powers. At the surface of the water let { be the depression at (x, y) below the mean
level. Then

is the kinematic surface condition, and

the equation of pressure, which, since
2 4
iy o
g2= —*u'+—f + ¢ +
dx dy

d ¢

dx

2
[@] _2_ 5,998 . (@p)
dz el

gives

v +24=0

and, therefore, with (1)
ag_vid'e
dz g dx*

On account of the symmetry of the ship with respect to the median plane y = 0, we have d ¢/dy = 0 when y =0,
except over the ship, where, if 4 is the semi—breadth at (x, z),

AP_ 4Ty rrz) Gy - (3
dy dx

and this condition is taken to hold at the plane y=0, instead of at the surface of the .ship, the justification being
the same as that for equation (I), Finally d ¢/dz = 0, at the bottom, z = 4, of the water.

We now consider the solution for ¢, in the part of the water where y is positive, with the given boundary
conditions at z=0, z=h, y=0.
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The typical term in the solution is

acosn (z—h)cos (mx+ a)cos (py+ ),

2

where m +n2+p2=0. Here m must be taken real as the water extends from x = — oo to x =+ o0; n and p maybe

either real or imaginary, but if p is imaginary [ =ip'] the last factor must take the form e * Y,
This term satisfies d@/dz=0 at z=h, and it also satisfies equation (2), if
n tan nh = —v °m 2/g ........ (4)
This equation has an infinite number of real roots and one pure imaginary root given by
n'tanh n'h = v >m 2/g , [n=in"].

We shall see that the imaginary root is alone responsible for the wave—making resistance. As for p it is always
imaginary for the real roots of », and is so for the imaginary root if m > n'.

The condition (3) will now require the expansion of the given function f{x, z) in the form
2> amncos n(z—h)cos(mx+ ),
where the summation with respect to m will take the form of an integral.

Suppose at first the function periodic in x so that

flx+lz)=f(x-1z2),

and put

Flx,2) = Zrzn{ﬁm cus$+ B,, sin?}cusn (z — k)

b
where 7 is a positive integer.

By Fourier’s method

Ef Fi{x,2) cus?dx =02, A eosn(z - h),
[, 72 sin?arx — 1.3, B,y cosn(z - A),

where Ay, 1s to be halved as usual.

Since the functions cos n( z — & ) are all conjugate, as is easily proved, from these we get
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EEE,; Jx,z) cns?cnsn (z-h)dxdz=1[A,, I;Ecnsz nf{z-h)dz

and =£Amqi[2nh+si112nh);
n

ISEE,{ F{x,z)sin ?cnsn (z-h)dedz=IB,., 41_?1 (21151 + sin 2k}

where AgQ

is to be halved; and the coefficients of the terms given by the imaginary roots, here, as always below, are got
by pitting n=in"; so that

ISEE; Fx,2) cusﬂjﬁ coshri (z— A)dxdz=[A,,, $ (En'h + si.nhzn'h)

and so for B,

Hence the theorem
4ncositfz — i)

Foz) =2, 2., I @nh+sin2nk)

4n'coshi'{z - 1) (i (k& ar
" T@ns swh2h) 15l 78,6y eos=—(§ — x)coshn (¢ ~n)dgds.

[[)J; 7 &:6yc0s™ (¢ - x)eomn (¢ - mydg s

Now let / become infinite, and putting

nt 1/lI=m
1t/1=dm,

we get

rneosi{z — h)ecosn{d — 1)
21k + sin 2i4

ri'ecoshr'(z — k) coshi'{4 — 7)

2r'h + sinh2m'h

cosm(E — x)d d Edm

Fe= 230

o N cosm(é—x)d & dédm

In particular, supposes the depth of water infinite, we have then

nh=rr+e¢,
hdn=r,
tan nh = tang
cosn(z—h)=(-)cos (nz—¢),
2n+(sin2n h)/h =2n,

ntan &= —km 2., [k=v2/g],
) —2kmin
5m2£=ﬁ,
ne +k“m
nd —kim?
cn52£=ﬁ.
ne +k“m
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Also

tanh n'h = 1,
n =km2,
coshi'(z - 7) coshin'(g - 7) _ L —n'(z+g)
2in'h +sinh21n'h 2 '

The result receives some confirmation from what has been observed with torpedo—boats at high speeds. It has
been found that the total
resistance varies as a power of the velocity which at first is nearly the second, but which, increasing to a

maximum, ultimately Incomes less than the second [
. A very simple investigation, given below, shows that in shallow water, if we neglect all but the long waves,
the wave—resistance varies ultimately as the first power of the velocity.

I may mention that somewhat similar work to that of the present paper gives a theory of the damping of the
oscillations of ships due to wave—making. This I hope to give in a subsequent paper.

Substituting, we get
Fx,2) = %I I ID _mf{rf ycosfiz — g)cosfig — g)cosm(E — xX)dEd{dmdn

+ %I;D.[golfomf{'fsg]mze‘kmg(z+._{) cosm(g—x)d&d s dm,

which is the theorem on which the rest of the present paper is build. It is curiously easy to give an d posteriory
proof of the theorem. Using the value of ¢ given above we find

e ! b 2
cns{nz—chus{ng’—sj=cnsn:zcnsng’—cusn{z+§]m—smrx{z+g’jm.
ne+km ne+km
Integrate the last two terms with respect to n, viz.
i m 4Imc0m(2+-§} dn = Fim E—kmz(z+.§’}
0 H2+k2 4
zlmnsm{zhﬂ dn = T i o= km? 2+ )
0 P +k2 4 o

and the quadruple integral becomes

%I?I?I?Iilf{rj,Q’qusnzcnsn;’cusm{;—x)d;dgdmdn
T

2;{ OO pCO OO 7 _kmz =y
- R s ) cosm(g - nyagdgam.
The former integral is f{ x,z ), and the latter disappears with the triple integral in the given formula.

Considering now, for simplicity, the water infinitely deep, it appears at once that the required solution for ¢ is
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cos(inz — g)cos(nf — £)

J"J’I2 +H2

{2 02
cosm{E —x)e V" T YdEdedmadn

2 00 pCO P00 p OO
p- H—‘;JD I ey

2 2
oM =+ g _ T3
> sin (:::—§]+me v ige -1-yed&dd dm .. (5)

N

2 o u2(2+.;’}f =3
R0 gmsm_m_m_m ' Vagagan
i § \/1 mv? fg

I gt 70"

for this gives

j? =—v f(x,2) = dx 2% wheny=0.

In this expression attention must be called to the factor

sin{m{x—gf]+m1jm2‘v’4f§2—1 ¥}

in the second integral. This form is not required to satisfy the boundary conditions formulated above; and it is
evident the solution is to a certain extent indeterminate with those conditions, for we may superpose any
system of free waves symmetrical with respect to y

= 0 on a particular solution satisfying them. The form of the factor in question is chosen in order to make the
elementary diverging waves trail aft; in other words, to satisfy the condition that the ship advances into still
water.

Leaving the reduction of the integrals on one side, for the present, we proceed to calculate the wave—resistance

(R).

Let Op be the increase of pressure duo to the wave—disturbance. Then
d

R=-2[[&p ﬂﬁﬁ
a:fx

the double integral extending over the median plane of the ship. Now measuring from the undisturbed surface

p=rn+gpz—hpqi+ipv,

and therefore
Jp = v @ .. (q.p.)
dx

so that

=-2p0v ” iﬁ ig dxdz:

Substituting the value of d ¢/dx, we see that the first and third integrals in the expression for ¢ add nothing to
the resistance because
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””f(é‘,@’,’]f{x,z) sin # {x — &) défdgdxafz:ﬂ’

on account of the odd factor sin m (x — &) , and hence

4 . 2 —my (z+._f,’)fg
R—4:;Ig[j jj,ﬂxafggj 2 cmm&—ﬂ&ﬁﬁ&%&m
£ Jm vt - ©)
_ 4pv4 (12, Ig medm _ 4pg AdA
g [%( L mivtig e ) Z-1

where 4 = mvz/g , and
22

I= IEDEDmf(x,z}E_’I gz/v cosAg x/vidxdz,

[l ] — 2

=[P e T

If the ship is similarly formed at bow and stern I = 0, the origin being at midship.

sin Az x/v2 dxdz.

We can now prove that the resistance vanishes when the velocity is infinite.

Observe that

;?Egzj.-'{vg -4 gzj.-'{v2

Jy Fenz)e” dz=F(x)|, e

1 ,u,z
oo = Y Ry o (D
P (x)

where F( x ) is less than the greatest value of f{ x,z ) for a given value of x; and, therefore, if we substitute a
large number ¢, instead oo as the upper limit of 4,, the part of R neglected is of order not greater than

—Oorv

Imf:f/l 2,2,

and this vanishes when v = oo if we take

In the part of R retained A g/v 2 is small throughout, so that we may expand the circular functions and write
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=I I Fx,2)e” ez v

,Ezgz,.-'rv2

1}123' I I f{:.::z):::e dxdz+...

‘u‘

.T=}1!.%I I fx,z)xe ™ 8z v i dz

3
3 €0 peo 3 —Agzv
—%}i. f_ﬁlﬂ I_mf{x,z)x e axdz 4.

Now
[© fnax=[" d??dx 0

the ship being of finite length and 7 = 0 at both ends. Hence, using the formula (7)

3
I=AZ BA [ij i

‘Lf'z ¥

1 2
T=A'—+ B';i,[ij .
2

2
¥
and 2 2 4 7
4 1 AcdA
rR=-FE [la— B”[%] + O A [%] T
AV FE v 0 FE |
The successive terms are of orders
v—210gv2 v_10/3,

and all vanish when v = co. The resistance therefore ultimately vanishes. Of course this result is only proved for

a ship which is very short in comparison with m_the depth of the water.
We now proceed to the reduction of the integral which gives the resistance duo to two elements of the surface.

Consider two elementary areas o, o’ at (x,z ), (x’,z") on the side of the ship, and lot 8, 8’ be the inclinations of
the horizontal lines in these areas to the axis of x. The resistance due to these two elements is

2 2
8pg @ - ilg(z+z)/v 2
oc'8d'|, e cosAg(x—x")/v dA,
2 J g(x-x1)/ 7
2
of, say 8ps’ oo’ 66" SA% CosgA———d A,
ﬂ‘i?z '[ A2 -1
Now, writing for the moment z = x + i y, and taking the integral
igz
=4
[z
1-z2
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around the circuit enclosing the region x and y positive, we get

sé'x o e—é‘x

—dx=
Alx? LJ M1+ x°

dI+II

[T—=
Y
and, therefore_L§—1 , realizing,

]-m cus,sr}i. w e 7 1 sms;’i.

Ji I”ﬁd -l ﬂ ......... )

= [Pems b g [ sin (s sin ) 6= k1, () - ¥, ().

where k=1log 2 — y=.11593 ... .

From which

4% .o coss A

—— T, )~ X 6) 6 - %) -k T ) - W) }

ds* 2
since Jo"(s) + Jo'(s)/s +Jo(s) =0
Jo'(s) =J1'(s)
1 and so for Yo (5).
Now taking
2
H= Ime_’“”i coss A d—A,
1 2
A" -1

and putting

oo 2
e ¥ ’I‘lrcsﬂ.pd,u,

SR _ 1
JFIG

I I e “f4’{cusj.{3+,t1)+cnsﬁ.(s p}}dﬂ'd’u

Zw’— -1

1 o —,u fdlr
zr[ (kI 5+ W) -Y,(s+ @+kI,(c-p)-Y. (s- ) }d i

from equation (8).

From which H can be readily calculated by mechanical quadrature in the case in which 4-r is not large, and.

this is the case for ordinary ships. Elaborate tables of Jo and J| are now available, and tables mof Yo and Y1
have been calculated by Mr. B.A. Smith, who has kindly prepared tables of kJo — Yo and kJ1 — Y1, appended to
the present paper.

We now have
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d
_ ddx? =2J_'I-m e H ’}4’?{ F(s+ )+ Fs — 1) }du,

1
where  Fls + ) = kT, (s + ) = Y, (s +ﬂ)—m{k11(3+ 2 -Y(s+ ) b

and the expression for the mutual resistance is

4 oo 2
%aa’ﬂﬂh e H fél’“{F{.SHJrutj+Fi,f,sr—}ut}l Y

where

r=g(z+z') /",
s=g(x—x')/v2.

For elements at opposite ends of the ship s will in general be large compared with unity and with @; and in
this case we can put

k]'c:'{g"'ﬂ)_Yo{S"'!t): 4|ﬁ5ﬁ1{%—(3+ﬂ)} - 4-p

and so for ( s — 1) and then approximately

1 < oI —H Ju'r4r \/7 -r
H= smf= — £ cos = sin{= —s)e °,
ol pp= X sin(Z )
and the resistance is
Eﬂg sm{ﬂ' —.?‘=
_ Epg 'W'SM{H—E{I I]/‘u‘ Yo~ g(z+z],-"ru
vJE:r{x—x')

Now if / is the length of the free wave which travels with the velocity of the ship

v2=gl/27r,

and the formula can be written

82 poc@d
JH{x—x)

This gives a maximum resistance, approximately, when

sin#{1/4 -2 (x— x*) 1 } e~ 27 @2

x—x"=(nt7/8)1 ... [n an integer]

and a maximum assistance when
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x—x"=(nt+3/8)1

These formula correspond to the interference of the bow and stern waves, which has been so skillfully
discussed by Mr. R.E. Froude. When the two elements are on the same vertical cross—section of the ship,
another form of reduction may be given. Putting x — x' = 0, the integral to be considered is

G= ]-me_,,f d—/l
1 2
A0 -1
Put
A2 =15 (14 ),

1 dp
sothat A= — —+—"—,
Zﬁﬂfiﬂu
and l2=l/z(u—1);

whence G:%E‘?’H]’;’De—rﬁfz d—,{aﬂ
w -1

or, if g£=cosh ¢,

I —pf2peo - ha) /2 I —rf2
G=se [P AR gy _ R (r12)

where Ko is the Bessel function, so indicated by Gray and Mathews (pp. 67, 90).

Hence

5 22
e ";f ’11 __ ‘if - ée""ﬁ K, (/2)- Ko'(r/2) }= %e_ 28R (r/2) - Ky (r/2) }

since Ko' = K'1 , and the corresponding term in the resistance is

2, o ,
2p2 or;‘ﬂﬁ e_g':“z)"fzvz[Kg{g{z+z‘)12v2 }- Kl{g{z+z'}.’21f2}]

min

The functions K do not appear to have been calculated, but their general course is known. It will be sufficient
at present to refer to Gray and Mathews, chap. vii.

As an illustration of the process of calculating the resistance of a given ship at any speed, we may consider one
of simple analytical form which is fairly ship—shape and easily realisable. Experimental confirmation of the
result was not practicable, and the matter must be left in the hands of those who have the necessary apparatus
at command.

Let the surface of the ship be
y==%c(1+cosax)(1+cosbz),
between

x=% 1/a,
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z=0 and m/b;

Fig. 2.

—

Flx,z)= % = —gc sin ax {1+ coshz).

so that, for y positive,

Here I =0, and
T wfh - ik ala . .
——ar:ID (1+ cosbz)e dzj_ﬂasmaxsmﬂxfk dx
2
=—ac£2[2/1.4 + b2 —E_E”Iz’rbkbzkzj 3 sz s Afka,
A (A4 + 02N ek - )

where k = vz/g; and therefore

16gp 4 2,50 2,0 —xi bk, 2,2 sin” A ks ar
R= ack[1[2f+bk—€ bk]f 2,282 0202 4232 0 [
e (A +5°k°Y (o -AY 20481

which is best calculated by mechanical quadrature.
Suppose, for example, in foot—second units

v =20 (velocity of ship),
2 7 /a =200 (length of ship),
/b =20 (depth below water—line),
8c = 32 (greatest breadth),

then the integral is found to be 620, and the resistance is R=940 lbs. wt. about.

This seems to be about what one would expect from the experimental results available; but I know of no
formula with which to compare it, and experiment alone can decide whether the theory has numerical value. Of
course the method of successive approximations can be applied if necessary.

To examine the case of the ship in shallow water in which all but the long waves are neglected, we may
proceed as follows: — We make the motion steady as before and use the same set of axes. The
pressure—equation gives at the surface

dg :
+v —~ — [, as before ;
£¢ :

while the equation of continuity for long waves gives
Lol Si- -0,
cx ex dy dy
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where 4 is the depth of the water, and this is

dg .jﬂ a* ¢ - (q.p.)
Van de dy?

Differentiating with respect to x and substituting for ¢ from the pressure—equation, we obtain

d*¢ . d*¢_

(gh-v )—+§h 0,
dx? ciyz
or
‘ ‘
{cz—wz}d §'+r:2a'r §=ﬂ,
X dy

where c is the velocity of free long waves.

The ship being wall-sided, and extending to the bottom of the water, the kinematic equation over the ship is

dp__ dn

ay x

b

which on differentiation with respect to x and use of the pressure—equation gives

d 5 d?
g d_;' =V —? 3
and, of course, Y dax
46 4
Ay

over the rest of the plane y = 0.

Now if v > ¢, i.e. if the velocity of the ship is greater than that of the free wave, the equation

dﬂg‘_vﬂ_cﬂ dﬂ';_

, , be ol
is solved in the forrn;-= Fl v+ —y [ (10)

Z
where the boundary condition gives
pd = ol vl d 2?;.'
7 F'(x)= —
c ; g dx*,
FoF()= 9D
g pl —g? dx

The form of solution (10) is employed in order to make the diverging waves trail aft.

The disturbance therefore consists of two bands at an angle tan_l {c / J v 2_ ¢ 4 ) with the line of the ship’s
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motion, the front of each band being a hump above the mean level and its back part a hollow, which is similar
to the hump if the ship is similarly shaped fore and aft.

The resistance (R) is given by

Iﬁﬂ)d

«J ,

so that it is infinite when the velocity of the ship is equal to that of the free wave, and ultimately varies as the
velocity.

da dn
R=—24[ & ix = 2000 dx=2ph—
|®—"dc=2gpn[¢—"dx=2p

If v < ¢, the differential equation for z takes the potential form

d’ <., d*¢
—at 70
dx dy'
putting c?2_1}2
yiE—— v

The solution is now

2

< Id 7 logridx + C

R
o mg for Y axdt

where 7' 2 = (x'—x )2 + ' 2, and there is no wave-resistance.

b

If we add the solutions for an equally—spaced infinite number of ships moving abreast, we get the case of a ship
in the centre of a canal.

In the Table appended there may be an error of 1 in the last place or possibly of 2 in the values for x > 3 or 4.

Melbourne University, August 9, 1897.

Tables of k Jo—Y o and £ J; — Y1. By Mr. B. A. Smith, M.C.E.

X kJo)=Yo(¥) kJ1)-Yi(x) x. kJo()-Yo(x) kJ1(x)-Y1(x)

.00 o0 0 41 .9243 2.7384
.01 4.7200 100.0261 42 .8972 2.6822
.02 4.0274 50.0453 43 .8706 2.6286
.03 3.6215 33.3951 44 .8446 2.5773
.04 3.3331 25.0767 45 .8190 2.5282
.05 3.1091 20.0903 46 7940 2.4813
.06 2.9258 16.7695 47 7694 2.4362
.07 2.7705 14.4002 48 .7453 2.3929
.08 2.6359 12 6255 49 7216 23514
.09 2.5168 11.2470 .50 .6983 23111
.10 2.4099 10.1457 51 .6753 22729
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x. kJo()-Yox) AN(x)-Yi(x) x. kJo(x)-Yolx) kJi(x)-Yi(x)
11 2.3133 9.2459 52 .6528 2.2357
12 2.2245 8.4971 53 .6306 2.1999
13 2.1428 7.8645 .54 .6088 2.1653
.14 2.0670 7.3230 .55 .5873 2.1319
15 1.9961 6.8545 .56 .5661 2.0995
.16 1.9297 6.4450 57 .5453 2 0681
17 1.8671 6.0843 .58 .5248 2.0377
18 1.8079 5.7642 .59 .5046 2 0083
.19 1.7517 5.4780 .60 4816 1.9798
.20 1.6982 5.2209 .61 4650 1.9521
21 1.6472 49888 .62 4456 1.9251
22 1.5983 4.7779 .63 4264 1.8988
23 1.5515 4.5855 .04 4076 1.8732
24 1.5066 4.4091 .65 .3890 1.8483
25 1.4633 4.2476 .66 3707 1.8241
26 1.4216 40983 .67 3525 1.8005
27 1.3813 3.9603 .68 3346 1.7775
28 1.3424 3.8323 .69 3169 1.7550
29 1.3046 3.7131 .70 .2995 1.7329
.30 1.2680 3.6020 71 .2823 1.7114
31 1.2326 3.4982 72 2653 1.6904
32 1.1981 3.4007 73 .2485 1.6699
33 1.1645 3.3091 74 2319 1.6496
34 1.1319 3.2233 75 2155 1.6299
35 1.1000 3.1423 .76 .1993 1.6105
.36 1.0690 3.0656 77 .1833 1.5914
37 1.0387 2.9932 .78 1675 1.5728
.38 1.0092 2.9245 .79 1518 1.5544
.39 .9803 2.8593 .80 .1363 1.5365
40 9519 2.7973 .81 1211 1.5188

Table (continued).

x. kJo()-Yo(x) kNi(x)-Y1(x) x.  kJo(x)-Yo(x) kJ1(x)-Y1(x)
.82 .1060 1.5015 4.8 4277 —-.3354
.83 .0910 1.4913 4.9 4588 -.2817
.84 .0763 1.4674 5.0 4846 -2323
.85 .0617 1.4509 5.1 .5052 —-.1786
.86 .0473 1.4346 5.2 .5203 -.1214
.87 .0330 1.4185 53 .5300 —.0690
.88 .0189 1.4026 54 .5343. —-.0159
.89 .0050 1.3870 5.5 5332 +.0373
.90 —-.0088 1.3715 5,6 .5269 .0892




v KJ0-Yo) ANE-Yi®) x| kJo(0)-Yolx) kIi(0-Yi(x)
91 -.0224 1.3563 5.7 5155 .1393
.92 -.0359 1.3113 5.8 4991 1873
93 -0493 1.3261 5.9 4782 2326
94 -.0625 1.3117 6.0 4527 2749
95 -.0756 1.2972 6.1 4232 3139
.96 —.0885 1.2829 6.2 .3900 .3492
97 -1012 1.2688 6.3 3535 .3805
98 —.1138 1.2548 6.4 3140 4077
.99 -.1263 1.2108 6.5 2721 4306
1.0 -.1386 1.2271 6.6 2281 4488
1.1 —.2548 1.0966 6.7 1826 4625
1.2 -.3583 9757 6.8 1358 4715
1.3 -4501 8616 6.9 .0881 4758
1.4 -.5304 7526 7.0 ..0408 4755
1.5 —.6008. 6177 7.1 —.0065 4704
1.6 —.6604 5160 72 -.0531 4609
1.7 -.7101 4173 73 —.0986 4471
1.8 -.7500 3513 7.4 —.1424 ..4290
1.9 —-.7805 2583 7.5 —.1842 4071
2.0 -.8017 1682 7.6 -.2237 3814
2.1 -.8142 0812 7.7 -.2604 3524
2.2 -.8180 -.0023 7.8 -.2910 .3203
2.3 —.8138 —.0821 7.9 -.3243 2854
24 -.8017 —.1580 8.0 -.3510 2484
2.5 -.7824 -.2293 8.1 -.3739 2093
2.6 -.7560 -.2959 8.2 -.3928 .1684
2.7 -.7234 -.3576 8.3 -4076 1206
2.8 —.6848 —-4139 8.4 -4182 .0840
2.9 —.6407 -4619 8.5 -4214 .0408
3.0 -.5920 -.5100 8.6 —.4264 -.0020
3.1 -.5390 —.5492 8.7 —.4242 —.0438
32 -.4823 —.5823 8.8 -4177 —-.0851
33 —-4227 —.6092 8.9 -4071 -.1251
34 -.3606 —.6299 9.0 -.3926 -.1637
35 -.2970 —.6444 9.1 -.3744 -2001
3.6 -.2320 —.6525 9.2 -.3527 -.2343
3.7 -.1666 —.6546 93 -.3277 -.2657
38 -.1014 —.6505 9.4 -.2996 -.2940
39 —.0368 —.6406 9.5 —.2688 -3194
4.0 +.0266 —.6251 9.6 -.2359 -.3412
4.1 +.0881 —.6042 9.7 -.2012 -.3594
4.2 1472 -.5781 9.8 —.1642 -.3738
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X. kJo(X)Yo(x) kJ1(x)-Y1(x)| = kJo(xX)-Yo(x) kJ1(x)-Y1(x)
43 2035 —.5472 9.9 —-.1261 —.3845
4.4 2566 -.5120 10.0  —.0874 -3912
4.5 .3058 —4728 10.1 -.0181 -3911
4.6 3510 —4300 102 | —.0087 -3923
4.7 3917 —-.3812 103 +.0302

[*] Communicated by the Author.
[1]'On the Leading Phenomena of the Wave—Making Resistance of Ships'. Trans.Inst.Naval Architects, 1881

[£] White, p. 470

[§] See Gray and Mathews, 'Bessel Functions' p.65, and Ex.18, p.230. The formula (8) was given by Weber.
[**] ‘Messenger of Mathematics,” 1896.

Fhiiosgpthioad Mpasine, 7595, vol 55, Foo. 5 ps. 706—723.
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