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ABSTRACT 
 
This paper discusses a detailed computational study of 
the flow off a 2D transom stern. The steady RANS 
solver PARNASSOS is used, using a surface-fitting 
technique and the steady iterative solution algorithm 
for the free surface. 

For dry-transom flow, ‘inviscid’ computations 
using this RANS solver show excellent agreement with 
nonlinear potential-flow solutions available in the 
literature. Viscous effects are shown to cause a 
substantial  reduction of the trailing wave length, and a 
scale effect on that wave length. The transom 
immersion is systematically increased to investigate the 
limits of the dry-transom regime. A local vanishing of 
the longitudinal velocity at the wave surface near the 
first wave crest is used as an indication of wave 
breaking. The critical Froude number at which this 
happens is substantially increased by viscous effects, 
and much more so for model scale than for full scale. 
Therefore, in a range of transom Froude numbers a 
smooth flow will occur at full scale, but a spilling 
breaker just aft of the transom at model scale. It is 
shown that the width of this range may depend on the 
hull form, as it results from two opposite scale effects. 
 For wetted transom flows, the predictions at 
model scale show good agreement with experimental 
data for the water level at the transom and the trailing 
wave system. The transom immersion is systematically 
decreased to investigate the clearance of the transom. It 
is shown that at a given transom immersion the 
clearance is larger at full scale than at model scale. 
Thus there is a range of conditions where the transom is 
just cleared at full scale, with a spilling breaker 
downstream, while the flow is still attached to the 
transom at model scale. 
 
INTRODUCTION 
 
Methods to compute viscous flows with free surface 
around ship hulls have undergone substantial 
development over the last decade. While most current 
methods ask large computation times, and dense grids 
are needed to avoid undue numerical wave damping, 

the limits are being gradually shifted and practical 
application in ship design is approaching. 
 Today, the most common way to predict ship 
wave patterns and wave resistance in practical ship 
design is by using free-surface potential flow codes. 
Compared with these, the much more computationally-
intensive RANS/FS codes include all viscous effects on 
the wave pattern; therefore, should offer improved stern 
wave predictions in the first place, and perhaps other 
improvements locally; besides, of course, providing the 
viscous flow field. 
 An important application area in which 
RANS/FS codes should enable a step forward in design 
quality is the flow off a transom stern. The majority of 
modern vessels has a transom stern, which is immersed 
at rest for fast vessels and for some very full-block 
vessels, but which usually is above the still-water 
surface for most merchant ships. Design requirements 
have stimulated the use of very wide and flat transom 
sterns, e.g. for ferries. Thus the design of the stern and 
choice of the transom edge height has become rather 
critical; in particular since an improperly designed wide 
transom tends to generate transverse waves which are 
detrimental for resistance. 
 For a proper transom stern design, it is 
essential to foresee the flow regime that will occur 
there: will the transom be wetted or dry, for the ship at 
full scale at a given draft and speed? Will the flow be 
smooth or will wave breaking occur aft of the transom? 
It is not easy to answer that question based on 
experience only. Rules-of-thumb are sometimes quoted 
for assessing whether a transom is cleared, e.g. 
Saunders (1957); but these are based on a transom 
Froude number which does not even exist for a transom 
above the still-water surface. These simple rules are 
only applicable in very simple situations and are 
evidently inadequate for normal ships. In general 
situations, the transom flow regime depends on the 
transom height and shape, buttock slope, the wave 
system generated upstream, the boundary layer flow 
around the hull, etc. Therefore, RANS/FS methods can 
make an important contribution by predicting the 
transom flow pattern, and enabling a more precise stern 
design to guarantee a favourable flow at full scale.  



 The present paper describes a detailed study to 
evaluate the accuracy and applicability of such 
predictions. Also, it addresses the viscous and scale 
effects on the flow pattern aft of the transom, which 
appear to be remarkable. Since the RANS code used is 
a steady surface-fitting method, it does not include all 
the physics occurring, such as wave breaking or 
unsteadiness. Therefore, an additional objective of the 
study is to assess the practical applicability of such a 
method to the various transom flow regimes. 
 The paper is set up as follows. The next 
section describes the main physics of transom flows, 
and reviews existing literature; leading to the questions 
to be addressed in this paper. Subsequently we briefly 
describe the computational method we use, followed by 
a description of the test case. Next, the dry-transom 
regime, the intermediate regime (characterised by wave 
breaking just aft of the transom) and the wetted-
transom regime are addressed discussing detailed 
studies for the simplified 2D test case. Then a 
discussion of transom resistance and a simplified model 
to understand some of the physics in the wetted flow 
regime are followed by a brief discussion of the 
extension to 3D cases and finally the conclusions 
drawn from the present investigation. 
 
TRANSOM-STERN FLOWS 
 
Physics 
We shall first concisely describe the principal physics 
playing a role in transom flows. Conventionally, a 
distinction is made between a dry transom flow and a 
wetted transom flow. In the dry-transom regime, the 
water surface leaves the transom edge more or less 
smoothly. This requires that the pressure at the transom 
edge equals the ambient (atmospheric) pressure. If the 
hull would just continue smoothly aft instead of being 
cut off at the transom edge, the pressure level there 
would in most cases be higher than the ambient 
pressure; dependent on the aftbody shape, the ship 
wave pattern, propeller action etc. The transom flow 
must then be such as to cancel that pressure difference. 
This means that the flow will curve upward, the 
convexity of the streamlines producing the required 
pressure decrease. A wave crest aft of the transom will 
occur. For increasing transom immersion, the required 
pressure reduction increases, and so does the upward 
curvature and the resulting stern wave height.  
 In inviscid flow, Bernoulli’s equation connects 
the wave elevation and the velocity of the flow at the 
surface. Maximum wave height, and maximum wave 
resistance, occurs for a transom immersion such that 
the flow velocity vanishes at the wave crest. For larger 
immersions (or lower speeds), no dry-transom solution 
is possible in an inviscid flow without wave breaking. 

 In a viscous flow, however, there is a 
boundary layer along the hull, which leaves the hull at 
the transom edge. The resulting wake that remains 
along the wave surface has a momentum deficit 
compared with the inviscid flow. Consequently, as this 
wake has to flow against gravity towards the first wave 
crest, for sufficiently steep waves (less than the limiting 
steepness in inviscid flow) the velocity will vanish at 
some point, which is an indication of the onset of wave 
breaking. A spilling wave breaker will occur at the 
front face of the first wave crest aft of the transom. For 
increasing transom immersion, the vanishing of the 
velocity will occur closer to the transom, until at some 
point the spilling breaker reaches the transom and 
forms a recirculation region aft of the transom, giving 
rise to the wetted-transom regime. 
 In the wetted-transom regime, in this 
recirculation region aft of the wetted part of the 
transom the pressure is reduced, therefore the water 
surface is somewhat below the surrounding level. 
When the transom immersion is reduced or the speed 
increased, this depression reaches the transom edge 
again, and the reverse transition to a dry-transom flow 
can follow. Through this transition the flow is strongly 
unsteady (Maki et al, 2006). 
 As mentioned, a main parameter determining 
the transom flow is the pressure level that would 
prevail at the position of the transom edge in case the 
hull would just be extended aft; to be denoted trcpΔ . In 
case any effects of the hull form and wave system can 
be neglected (as is valid for the 2D semi-infinite body 
considered later), this is just the hydrostatic pressure at 
the transom edge, in nondimensional form: 
 

22tr trcp Fn −Δ =  
 
in which / .tr trFn V g T= is the transom immersion 
Froude number and Ttr is the transom draft. In such 
cases Fntr is the main parameter determining the flow; 
but in more general cases it is not. While the pressure 
difference trcpΔ is more meaningful in general, it does 
not provide any simple design rule. 
 
Literature review 
There is quite some literature on the computation of 
transom flows, but mostly for potential-flow methods. 
For the earlier linearised free-surface potential-flow 
methods, modelling transom flows remained 
insatisfactory, as the requirement that the wave surface 
leaves the hull at the transom edge, in most cases is 
inconsistent with the linearisation assumptions. For 
flat-ship linearised methods, a consistent treatment is 
possible, and an important paper on this by Schmidt 
(1981) points out several properties of transom flows, 



e.g. the presence of a square-root singularity of the 
pressure along the hull at the transom edge.  
 Nonlinear free-surface potential-flow 
methods, however, do admit an adequate modelling of 
the dry-transom regime. A most significant paper on 
the fundamentals of transom flows is Vanden-Broeck 
(1980). He considers a 2D semi-infinite body with a 
flat bottom and transom, and derives accurate fully 
nonlinear potential flow solutions for dry-transom 
flows. Vanden-Broeck demonstrated that at a critical 
value of Fntr = 2.23, the trailing wave system reaches 
maximum height, and for lower Fntr no potential-flow 
solution of dry-transom flow exists. Scorpio & Beck 
(1997) address the same case, but use a more general 
singularity method, getting solutions in good agreement 
with Vanden-Broeck's results. Similarly, the widely 
used 3D panel codes to solve the fully nonlinear 
problem can reproduce this solution fairly well, and in 
practice give very useful indications on dry-transom 
flows (Raven, 1998). However, they are unable to 
predict wetted-transom flows or indicate which of the 
regimes occurs due to the neglect of viscous and wave 
breaking effects. 
 Much more complete representations can be 
expected from RANS/FS methods, as these do include 
the interplay between viscous and free-surface effects. 
An early paper is Haussling et al (1997), who show 
some fairly good predictions for the 5415 case at Fn = 
0.41, indicating that in viscous flow the stern wave is 
noticeably further forward than in inviscid flow. At the 
Gothenburg 2000 workshop, rather variable predictions 
were shown for the 5415 model at Fn = 0.28; but no 
specific information was given on the treatment or 
accuracy. Lin and Percival (2001) discuss a grid 
topology for a surface-fitting method that would permit 
to model the transition between a wetted and a dry-
transom regime, but their predictions show no 
illustration that this is achieved. At the CFD Workshop 
Tokyo 2005, large variations in the stern wave pattern 
and height were predicted for the same 5415 model at 
Fn = 0.28. Some different surface-capturing methods 
were applied, giving a dry transom in some cases, a 
wetted transom in others. In the discussion it was 
pointed out that the grid density may determine the 
regime obtained; and that, moreover, the 5415 Fn = 
0.28 case was rather unsteady in the experiments. 
 In Wilson et al (2006), results from several 
methods, for the Athena hull at two Froude numbers, 
are compared with model-scale data. All methods, 
mostly belonging to the free-surface capturing 
RANS/FS category, appeared to give qualitatively good 
predictions, in particular for a higher-Fn case with 
smooth flow off the transom. Main deviations were a 
slight shift of the stern wave crest, and damping of the 
wave pattern away from the hull. The paper does not 

address the ability to predict the transition between 
regimes and other details. 
  A most detailed recent study on 2D viscous 
transom flows is Maki et al (2006). They used viscous 
unsteady free-surface capturing codes, one a level-set 
code and the other a VOF code, for a flat-bottomed 
semi-infinite model at a range of transom Froude 
numbers; and compare with own experimental data. 
They discern four different flow regimes: a low-speed 
regime with a wetted transom and little unsteadiness, 
for Fntr < 1; a subsequent regime with a wetted 
transom, showing strongly unsteady behaviour in the 
experiments, extending up to the transition to dry-
transom flow; a dry-transom regime having a spilling 
breaker aft of the transom; and the final dry-transom 
regime in which the breaking has been shed and a 
smooth flow occurred, for Fntr > 4 in these 
experiments. They showed that an indication of the 
flow regime rather naturally followed from their 
computations. However, in the computations a much 
too strong unsteadiness was obtained. It is concluded 
that the computational tools are not yet ready to give a 
definitive answer to the problem. 
 
Objectives of this paper 
Summarising, it seems that the ability of RANS/FS 
codes to predict transom flows sometimes seems to be 
taken for granted, and predictions are simply made 
without prior study. However, many complicated 
processes are playing a role, and there are still 
important questions on the prediction of the flow 
regime, dealing with wave breaking and its effect on 
the trailing wave pattern, accomodating transitions 
between flow regimes in a code, the effect of 
turbulence modelling and grid density and the effect of 
the unsteadiness. It is to be noted that, while surface 
capturing methods may indicate the inception of 
breaking and survive the overturning of the computed 
wave surface, the physics playing a role in wave 
breaking are usually not modelled and not resolved; so 
for those methods the realism is just as well to be 
demonstrated. 
 The present paper then has several objectives. 
In the first place, we want to check to what extent our 
RANS code can predict the various flow regimes. It is a 
surface-fitting method, with a single-valued description 
of the wave surface; and it is in completely steady form 
and disregards the unsteadiness. Therefore, success is 
not guaranteed; but if applicable, this could be a much 
more pragmatic and efficient approach for ship design 
purposes than having to carry out a time-accurate 
simulation of the unsteady phenomena, requiring small 
time steps and long integration times in order to get a 
reasonably stable time-averaged result. 
 Secondly, we want to validate the predictions 
obtained with available detailed data on transom flows 



and the transitions. Thirdly, using the predicted flow 
fields we want to study and understand the physical 
characteristics of transom flows, and in particular to 
study the scale effects occurring, for which there does 
not seem to be any published information. All this will 
be addressed in the following sections. 
 
THE RANS SOLVER 
 
The code we use is PARNASSOS (Hoekstra, 1999; Van 
der Ploeg et al, 2000), which is a RANS solver 
developed and used by MARIN and IST (Instituto 
Superior Técnico, Lisbon, Portugal), dedicated to the 
prediction of the steady viscous flow around ship hulls. 
It solves the discretised Reynolds-averaged Navier-
Stokes equations for a steady, 3D incompressible flow 
around a ship hull. Of the various turbulence models 
available we have here used the one-equation model by 
Menter (1997) and the two-equation k-ω SST model by 
Menter (1994). The code uses structured multiblock 
body-fitted grids, usually of HO type.  
 Central schemes are used for the grid metric 
and diffusive terms. For the convective terms and in the 
continuity equation we use second-order upwind 
schemes in the streamwise direction, and third-order 
schemes for the normal and girthwise direction. For the 
gradients of the pressure in the momentum equations 
we use third-order schemes.  

Unlike most other methods, PARNASSOS solves 
the momentum and continuity equations in their 
original form, without resorting to e.g. a pressure-
correction equation or an artificial-compressibility 
form. This is enabled by retaining the full coupling of 
all equations in the solution process. After 
discretisation and linearisation, the momentum and 
continuity equations give rise to a matrix equation 
containing 4*4 blocks, which is solved using GMRES 
with an incomplete LU-factorisation as a 
preconditioner. The system of linearised equations is 
solved, for all variables simultaneously, for subdomains 
that consist of several streamwise stations at a time. It 
is possible to choose these subdomains in the range 
from one plane to even the complete domain. The 
subdomains are addressed in a downstream sequence. 
This downstream marching process must be repeated 
until the solution has converged. More about the 
solution procedure can be found in (Van der Ploeg, Eça 
and Hoekstra, 2000). 

 
Free-surface treatment: the steady iterative 
formulation 
The method is of a free-surface fitting type; the upper 
boundary of the computational domain coincides with 
(an approximation of) the wave surface all the time, 
and therefore needs to be updated repeatedly. Free-
surface boundary conditions (FSBC's) are imposed 

here. If we denote the velocity components (in a (x,y,z)-
co-ordinate system fixed to the ship, with x positive aft 
and z upward) by u,v,w, the wave height by ζ(x,y), and 
non-dimensionalise all quantities using ship speed U, a 
reference length Lpp, and gravity acceleration g, the 
free-surface boundary conditions are: 
• a kinematic condition, 
        0t x yu v wζ ζ ζ+ + − =   at  z ζ=                       (1)                         
• a normal component of the dynamic condition, 

requiring that at the surface the pressure is 
atmospheric (p=0); neglecting surface tension and 
viscous contributions this takes the form  

      2 0Fn ψ ζ− =   at  z ζ=                                       (2)                             
in which ψ=(p+ρgz)/(ρU2) is the non-dimensional 
hydrodynamic pressure. 

• two tangential components of the dynamic 
condition, requiring that no shear stress is exerted 
on the water surface.     

 
Almost all other methods for computing viscous free-
surface flows solve this problem by following a time-
dependent procedure, starting from an initial condition 
and continuing until a steady result is obtained. As is 
discussed in (Raven and Starke, 2002), this can lead to 
a slow formation of the steady wave pattern, persistent 
time dependence, reflection of waves at artificial 
boundaries, and contact line problems.  
 Instead, we use the ‘steady iterative’ approach, 
first proposed in (Raven and Van Brummelen, 1999) 
and derived in more detail in (Van Brummelen et al., 
2001). This method avoids all unsteadiness and solves 
a strictly steady form of the problem directly by 
iteration. An alternative formulation then is required for 
solving the nonlinear free-surface problem. This is 
obtained by substituting the wave elevation from the 
dynamic condition into the kinematic condition, which 
yields: 
 
      ( )2 0x y zFn u v w wψ ψ ψ+ + − =   at  z ζ= .         (3) 
 
This combined condition, together with the three 
dynamic conditions, gives a set of conditions that 
corresponds exactly with the original set. In each 
iteration:  
I. the RANS equations are solved subject to the 

combined condition (3) and the tangential 
dynamic conditions, imposed at the current 
wave surface; 

II. next, the wave surface and grid are updated 
using the normal dynamic condition (2).  

Upon convergence the pressure deviation, normal 
velocity and shear stress vanish at the wave surface and 
the solution of the steady RANS/FS problem has been 
obtained. 



 The combined FSBC (3) is easily 
implemented because we use the fully coupled 
formulation described above. The derivative of ψ in 
main stream direction must be modelled by an upwind-
biased difference scheme. We use a third-order 4-point 
scheme, except in the first stations behind the transom, 
where lower-order upwind schemes must be used. 
 Several applications (Raven and Starke 2002), 
(Raven et al, 2004), (Hino, 2005) have shown that the 
steady iterative formulation not only is very efficient, 
often requiring an order of magnitude less CPU time, 
but, with the discretisation schemes used, also provides 
accurate results with very low numerical wave 
damping. In (Raven et al, 2004) a theoretical analysis 
of the numerical dispersion and damping is carried out, 
indicating that we have a third-order numerical 
damping and third-order numerical dispersion, 
explaining the good properties. 
 In the present study, the transom flow regime 
has been preselected and then the limits of that regime 
have been determined. For a dry-transom flow, the 
pressure at the transom edge is set equal to the 
atmospheric pressure. For a wetted transom, no special 
condition at the transom edge is imposed; on the 
transom, no-slip conditions are imposed, and the wall-
normal derivative of the pressure is zero. Hence the 
level of the free surface is not fixed in this case. 

For the present applications, one further 
adjustment was required. Especially at full-scale an 
extreme clustering of nodes towards the hull is needed. 
Because we use a structured grid, we also have 
extremely small mesh spacing normal to the free 
surface in the present test cases. If the diffusive terms 
are treated implicitly, their contributions in the 
coefficient matrix completely dominate those from the 
convective terms and the pressure gradient. This more 
or less decouples the pressure at the free surface from 
that below the free surface, preventing convergence. 
Therefore, the diffusive terms in the fourth boundary 
condition here are implemented explicitly i.e. they are 
taken from the previous inner iteration. With this 
adaptation, the convergence behavior strongly 
improves. 
 
THE COMPUTATIONAL MODEL 
 
Using a steady free-surface fitting technique, we were 
aware of the possible limitations in predicting the 
various transom flow regimes, including the effects of 
unsteadiness and wave breaking. The question then 
was: how can we identify the proper transom flow 
regime, for a given ship and speed? The answer is 
sought by approaching the transition between flow 
regimes from both sides: starting from a dry transom 
condition, and systematically increasing the transom 

draught; and starting from a wetted transom and 
decreasing it. 

The computational model can be described as 
a backward-facing step with free surface, see Fig. 1. It 
consists of a flat-bottomed plate with a length of Lpp = 
100 m. and a prescribed transom draught for each 
computation, typically varying between Ttr = 0.1 and Ttr 
= 0.5 m. in the case of dry-transom conditions, and 
between Ttr = 0.45 and Ttr = 1.5 m. in the case of wetted 
transom conditions. The origin of the co-ordinate 
system was located at the intersection of the transom 
with the still-water level. 
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Figure 1: A sketch of the computational domain and 
the applied boundary conditions. 

 
The inflow boundary was located halfway the 

plate, with an estimated boundary-layer profile for the 
mean velocities and the turbulence quantities. 
Downstream, the outflow boundary was located 1Lpp 
behind the transom. In vertical direction the 
computational domain extended 0.15Lpp from the 
undisturbed free surface. Note that these last two 
boundaries should be chosen sufficiently far from the 
plate not to influence the solution. Along the width of 
the plate a limited number of cells was used with 
symmetry boundary conditions imposed on the 
corresponding faces of the mesh, because we have used 
our 3D RANS solver to compute this two-dimensional 
flow problem. 

Unless mentioned otherwise, the computations 
have been performed both at model scale and at full-
scale Reynolds number, with a flow speed of Vs = 10 
knots and a scale factor of 20. This results in the 
following parameters for the Froude number and the 
Reynolds numbers, based on the length of the plate: 
 
 Fn = 0.164, 
 Rn = 4.5 x 108 (ship), 5.1 x 106 (model). 
 
In potential-flow theory the present computational 
model consists of a plate that stretches infinitely far 
upstream. In that case the Froude number based on the 
length of the plate is of no use, and the transom draught 
is the only length scale present in the model and thus 
the main parameter determining the flow. In the present 
study the Froude number based on the transom draught 



runs between Fntr = 1.34 for a transom immersion of 
1.5 m. to Fntr = 5.19 for a transom immersion of 0.1 m. 
 
RESULTS FOR THE DRY TRANSOM 
 
In the computations presented in this section the 
pressure at the transom edge has been set equal to the 
atmospheric pressure so that the transom is, by 
definition, not wetted. The aim of the computations is 
to study the flow behaviour with increasing transom 
immersion. It can be expected that the amplitude of the 
trailing wave system increases with increasing transom 
draught. At the same time the flow velocity in the top 
of the waves can be expected to decrease. By the time 
the flow stagnates in the top of the first wave crest, 
wave breaking will have occurred in reality. As wave 
breaking is not modelled in the present computations, 
an important aspect of the investigation is the 
behaviour of our flow solver and the predicted flow 
fields and wave elevations approaching this flow 
regime. 

Computations have been performed on a 
single-block, structured mesh with in the 
 coarsest mesh: (  26 + 126) x 20 cells, 
 medium mesh: (  52 + 252) x 30 cells, 
 finest mesh: (104 + 504) x 40 cells 
in the streamwise and the vertical direction, 
respectively. The two numbers for the streamwise 
direction correspond to the number of cells on the plate 
and in the wake, respectively. Both on the plate and in 
the wake cells are clustered towards the transom. 
Furthermore grid cells are clustered in vertical direction 
towards the plate, to capture the gradients that occur in 
the boundary layer. The non-dimensional wall distance 
y+

max < 0.40 for all viscous-flow computations. 
Menter’s one-equation model has been used to model 
the effect of turbulence on the mean flow. 

The initial shape of the wave surface in each 
computation was simply estimated to be a straight line 
between the edge of the transom and the still-water 
level at the outflow boundary. Then the RANS 
equations are solved, followed by a free-surface update. 
Upon convergence, the solution of the steady RANS/FS 
problem has been obtained. Figure 2 shows the 
convergence histories of the free-surface updates for 
three transom immersions that are representative for the 
computations presented in this section. For the smallest 
immersion considered (Ttr = 0.10 m.) the convergence 
is fast; after only five updates the maximum change  in 
the wave elevation between two updates has dropped 
below dz/Lpp = 10-6. However, the convergence speed is 
found to decrease with increasing immersion, and for 
the most challenging case considered (Ttr = 0.516 m.) 
approximately ninety free-surface updates were 
required to reach the same convergence level. It will be 
shown in the second half of this section that for this last 

case the flow almost stagnates in the top of the first 
wave crest. 
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Figure 2: The convergence history of the free-surface 
updates on the finest mesh for three transom 
immersions. Inviscid-flow computations. 

 
Inviscid-flow computations 

Accurate nonlinear potential-flow solutions 
for the present test case have been obtained by Vanden-
Broeck (1980). He provides the wave profile behind the 
transom for a transom-Froude number of Fntr = 2.35, as 
well as the steepness of the waves for a range of 
transom-Froude numbers. Using our viscous-flow 
solver, effectively inviscid solutions of the present 
problem were obtained by changing the no-slip 
condition on the wall to free slip and by imposing a 
homogeneous velocity field at the inflow boundary. 
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Figure 3: Comparison between the wave heights 
predicted by nonlinear potential-flow (symbols) and the 
present inviscid-flow solution (solid line). 



 
In Fig. 3 excellent agreement is shown at this 

transom-Froude number between the predicted free-
surface elevation according to the nonlinear potential-
flow solution by Vanden-Broeck and the present 
inviscid solution. 

Also at other transom-Froude numbers 
excellent agreement is obtained between the two 
methods. This is illustrated in Fig. 4, showing the 
variation of the wave steepness, s, with the transom-
Froude number. Here the wave steepness is defined as 
the ratio between the wave amplitude (the difference 
between a wave crest and a wave trough) and the wave 
length. 
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Figure 4: The relation between the wave steepness and 
the transom-Froude number for inviscid flow. 

 
The two straight dashed lines in this figure 

indicate the limiting case reported by Vanden-Broeck, 
where a wave steepness of s = 0.141 is reached at a 
transom-Froude number of 2.26. Below Fntr = 2.23 no 
inviscid flow solutions can exist without wave 
breaking. The curved dashed line corresponds to linear 
wave theory, according to which the wave steepness 
would grow unboundedly with decreasing transom-
Froude number. Both the nonlinear solution and the 
present inviscid solution agree very well with the linear 
theory for Fntr > 3. At lower transom-Froude numbers 
these solutions start to deviate from the linear solution, 
and the wave steepness is found to increase rapidly 
towards the limiting value as the value of Fntr = 2.26 is 
approached. 

The good agreement between the nonlinear 
potential-flow solution and the present inviscid solution 
illustrates the accuracy that can be obtained with our 
free-surface method; and provides an accurate starting 
point for the following investigation of viscous effects. 

 Figure 5 presents an example of the variation 
of the pressure coefficient along the aft end of the plate 
and the free surface. At the aft end of the plate the 
pressure shows an approximate square-root behaviour 
in accordance with the theory pointed out by Schmidt 
(1981). Further downstream the pressure increases and 
decreases in phase with the following wave crests and 
wave troughs. The corresponding wave elevation 
follows from the pressure distribution along the free 
surface using the normal component of the dynamic 
FSBC. 
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Figure 5: The pressure distribution along the aft part of 
the plate and along the free surface in the near wake. 

In the top part of Fig. 6 wave patterns are shown for the 
three cases of which the convergence histories were 
already shown in Fig. 2. Following Maki (2006) the 
wave height has been non-dimensionalized with the 
transom immersion of each case, and the streamwise 
co-ordinate with the linear wave length, defined as 

2/ 2 0.169lin ppL Fnλ π= =  
As expected the wave height increases with increasing 
transom immersion, but the height of the first wave 
crest aft of the transom grows faster than the following 
wave crests due to the near-field disturbance. At the 
same time the length of the trailing wave system is 
reduced due to nonlinear effects. Nonlinear effects also 
cause the wave crests to become sharper and the wave 
troughs to become broader. The reduction of the wave 
lengths is quantified in Table 1. There it can be seen 
that for the smallest transom immersion considered the 
wave length is practically equal to the linear wave 
length. For a transom-Froude number of Fntr = 2.59 the 
wave length is reduced to approximately 95 per cent of 
the linear wave length, and for the smallest transom-
Froude number considered, Fntr = 2.28, it is reduced to 
88 per cent of the linear wave length. 
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Figure 6: The wave profiles (top) and the axial 
velocity along the free surface (bottom) for various 
transom immersions. Inviscid-flow computations. 
 

Related to the increase of the wave height with 
increasing transom immersion is a decrease of the 
velocity along the free surface. This is illustrated in the 
bottom part of Fig. 6. Here it can be seen that the axial 
velocity along the free surface has alternatingly 
minimum and maximum values in the wave crests and 
the wave troughs, respectively. The axial velocity in the 
top of the first wave crest aft of the transom is found to 
decrease fast for decreasing transom-Froude numbers, 
especially close to the limiting value. As mentioned 
before, according to the nonlinear theory by Vanden-
Broeck the velocity in the top of the first wave crest 
should vanish for Fntr = 2.26, which is only marginally 
smaller than the smallest transom-Froude number 
shown in Fig. 6. In the present inviscid-flow 
computations we were not able to obtain sufficiently 
converged free-surface elevations for Fntr < 2.28. Note, 
however, that at this transom-Froude number the 
minimum value of the axial velocity in the top of the 
first wave crest is still equal to u/Vs = 0.38. Therefore it 
can be concluded that only a small further increase of 
the transom immersion (25 mm. in the present test case) 
will result in a relatively strong reduction of the 

velocity in the top of the first wave crest, causing the 
flow to stagnate. 
 
Table 1: Distance between successive wave crests, 
expressed as a fraction of the linear wave length. 
 2nd – 3rd 3rd – 4th 4th – 5th

Ttr = 0.10 m., 
Fntr = 5.19 

0.99 0.99 1.00 

Ttr = 0.40 m., 
Fntr = 2.59 

0.94 0.95 0.94 

Ttr = 0.516 m., 
Fntr = 2.28 

0.89 0.88 0.88 

 
Viscous-flow computations 
Similar to the inviscid-flow computations presented in 
the previous subsection, viscous-flow computations 
were carried out for the present test case. The main 
difference between the two flows is the presence of a 
boundary layer on the no-slip wall in the viscous-flow 
computations. Compared to the inviscid flow the 
boundary layer introduces a velocity deficit in the 
neighbourhood of the edge of the transom, which will 
affect the wave generation. Again, the transom 
immersion has  been systematically increased, starting 
from Ttr = 0.10 m., until the flow practically stagnated 
in the top of the first wave crest. 
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Figure 7: The mesh dependence of the wave elevation 
at model scale Reynolds number. Fntr = 5.19. 

 
An indication of the mesh dependence of the 

viscous-flow solutions presented in this section is given 
in Fig. 7. There the predicted free-surface elevation at 
model scale for the case Fntr = 5.19 is given for the 
coarsest, medium and finest mesh. The figure shows an 
increase of both the predicted wave length (numerical 
dispersion) and the predicted wave amplitude 
(numerical damping) with increasing mesh density. The 



solution at the coarsest mesh is apparently not accurate 
enough, but the solutions on the medium and the finest 
mesh practically coincide on the scale shown. It has 
been verified that the increase in the maximum wave 
height is approximately 7 per cent between the coarsest 
and the medium mesh, and 1 per cent between the 
medium and the finest mesh. While the distance 
between the transom and the third wave crest increases 
with 2.7 per cent of the linear wave length between the 
coarsest and the medium mesh, and with only 0.7 per 
cent between the medium and the finest mesh. It was 
therefore concluded that the solutions at the finest mesh 
are sufficiently accurate for the present purposes, and 
in the following only solutions obtained at the finest 
meshes will be used. 

In the top part of Fig. 8 and Fig. 9 wave 
profiles are shown for model scale and full scale, 
respectively. The solutions correspond to three cases 
from our systematic variation, namely the one with the 
smallest transom immersion studied here, the one 
where the flow almost stagnates in the top of the first 
wave  crest  and  one  with   a   transom   immersion   in 
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Figure 8: The wave profiles (top) and the axial 
velocity along the free surface (bottom) for various 
transom immersions at model-scale Reynolds numbers. 

between these two. The global impression of the 
variation of the wave pattern with the transom 
immersion is similar to what was found for inviscid 
flow, namely, with increasing immersion the wave 
amplitudes increase, especially that of the first wave 
which grows to more than twice the height of the 
transom immersion. At the same time the wave length 
is reduced. However, there are some striking 
differences as well. First of all the reduction of the 
wave length due to nonlinear effects is much stronger 
in the viscous flow fields than in the inviscid flow field, 
and more so at model scale than at full scale. This is 
further quantified in Table 2. There the distance 
between successive wave crests is listed for the case 
with the smallest transom immersion, Ttr = 0.10 m. As 
reported in the previous subsection, the wave length in 
inviscid flow is practically equal to the linear wave 
length for this case. For viscous flow the distance 
between the second and third wave crest in the solution 
has been reduced to 87 per cent of the linear wave 
length at full scale, and to 77 per cent of the linear 
wave length at model scale. 
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Figure 9: The wave profiles (top) and the axial 
velocity along the free surface (bottom) for various 
transom immersions at full-scale Reynolds numbers. 



Furthermore it can be seen that, whereas the 
wave length remains constant with streamwise 
direction in the inviscid flow, the wave length in the 
viscous flows shows a gradual increase in downstream 
direction. This is caused by the acceleration of the 
viscous flow aft of the transom, causing a change of the 
propagation speed for steady waves. 
 It can also be seen from Fig. 6, Fig. 8 and Fig. 
9 that the transom immersion at which the highest 
waves occur is significantly smaller at full scale, 
compared to the inviscid flow, and significantly smaller 
at model scale, compared to full scale. This will be 
discussed in more detail in the next subsection. 
 
Table 2: The distance between successive wave crests, 
expressed as a fraction of the linear wave length. 
Ttr = 0.10 m., 
Fntr = 5.19 

2nd – 3rd 3rd – 4th 4th – 5th

Inviscid 0.99 0.99 1.00 
Ship 0.87 0.89 0.89 
Model 0.77 0.79 0.81 
 

To illustrate the observed scale effect on the 
wave length more clearly, Fig. 10 presents the three 
solutions for the case Ttr = 0.10 m., Fntr = 5.19 in a 
single graph. Visible in the top part of this figure is the 
phase shift and the reduction in wave length between 
the inviscid flow and the two viscous-flow solutions. 
Directly aft of the transom the lower velocities in the 
inner parts of the boundary layer at model scale result 
in a smaller radius of curvature of the free surface, 
compared to full scale and the inviscid flow. 
Consequently at model scale the forward face of the 
wave is steeper, thus introducting the phase shift. 
Obviously, further downstream the phase difference is 
also affected by the observed difference in wave length 
between the three flows. 
 In the bottom half of Fig. 10 the axial velocity 
along the free surface is shown for the same case. As 
could be expected, the axial velocity oscillates around 
u/Vs = 1 in the inviscid-flow solution. In the viscous 
flow, due to the no-slip boundary condition on the 
surface of the plate, the flow velocity is equal to zero at 
the transom and then accelerates to the free-stream 
velocity (infinitely) far downstream. The acceleration 
of the flow is alternatingly reduced and increased in 
phase with the successive wave crests and wave 
troughs, respectively. As a reference, also shown in the 
bottom half of Fig. 10 is the acceleration of the flow in 
the wake of an infinitely thin flat plate subject to zero 
pressure gradient. In that computation symmetry 
boundary conditions have been imposed at the flat 
water surface in the wake of the plate. Comparing the 
two solutions it can be seen that the “average” increase 
of the axial velocity in the present test case is in close 

agreement with the acceleration of the flow in the wake 
of the flat plate. 
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Figure 10: The scale effect on the wave elevation (top) 
and the axial velocity along the free surface (bottom). 
The thin lines in the bottom half of the figure 
correspond to the acceleration of the flow in the wake 
of a flat plate at zero pressure gradient. 

 
Scale effect on inception of stern wave breaking 
Furthermore it is evident from Fig. 10 that there exists 
a large scale effect on the velocity field, just as on the 
wave pattern. This can most clearly be demonstrated by 
comparing the minimum velocities in the top of the 
first wave crest of each of the three flows. In the 
inviscid flow solution the magnitude of the axial 
velocity is locally equal to u/Vs = 0.94, while it is 
reduced to u/Vs = 0.66 and u/Vs = 0.53 for the full scale 
and the model scale solutions, respectively. This 
reduction is a consequence of the momentum loss in 
the boundary layer, which also makes that the flow is 
less able to overcome the hydrodynamic pressure rise 
towards the top of the first wave crest. While, on top of 
that, the steepness of the initial wave aft of the transom 
was found to increase with decreasing Reynolds 
number. Thus it can be understood that with increasing 
transom immersion the flow will stagnate sooner (that 



is, at smaller transom immersions) in the top of the first 
wave crest at model scale, compared to full scale and 
inviscid flow. While in the absence of a wake at the 
wave surface breaking occurs when the limiting 
inviscid wave steepness is approached (e.g. Duncan 
1983), the wake leads to wave breaking at a much 
lower steepness and, in this case, transom immersion. 
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Figure 11: Variation of the axial velocity in the top of 
the first wave crest with the transom-Froude number. 

 
In that respect Fig. 11 presents arguably the 

most important result of the present section. Shown is 
the velocity in the top of the first wave crest against the 
transom-Froude number for all the cases in our 
systematic variation of the transom immersion; and 
both for the inviscid flow and for the viscous flow at 
model and full scale Reynolds number. All three 
solutions show an asymptotic behaviour of the velocity 
in the top of the first wave crest with decreasing 
transom-Froude numbers. But stagnation of the flow in 
the top of the first wave is found to occur at a 
considerably higher transom-Froude number (smaller 
transom immersion) at model scale than at full scale 
and in inviscid flow. For the inviscid flow stagnation is 
found to occur at Fntr = 2.26, which is in excellent 
agreement with the nonlinear potential flow theory 
discussed in the first part of this section. This transom-
Froude number corresponds to a transom immersion of 
Ttr = 0.516 m. in the present test case. At full scale 
Reynolds number stagnation is predicted at a higher 
transom-Froude number of Fntr = 3.29, corresponding 
to a transom immersion of Ttr = 0.249 m. At model 
scale, finally, stagnation occurs at a transom-Froude 
number of Fntr = 3.99, corresponding to a transom 
immersion of Ttr = 0.169 m. This last result is in good 
agreement with the experimental observation by Maki 
(2006), who stated that “based on general observations 

on the experimental set-up wave breaking is shed aft of 
the first wave crest near a transom-Froude number of 
Fntr = 4, leaving an attached, steady, gravity wave”. We 
suppose here that a vanishing of the velocity 
component along the wave surface is an adequate 
indication of the inception of wave breaking. As a 
matter of fact, this criterion has been found to be valid 
in experiments, and has a more universal validity than 
criteria based on wave slope or free-surface curvature 
(which do not take into account the effect of a wake or 
surface current) or vertical acceleration.  

An important consequence of these results is 
that there is a range of transom-Froude numbers (3.29 
< Fntr < 3.99 for the present test case) where a spilling 
breaker occurs in the flow at model scale, while there is 
a smooth flow without any wave breaking at full scale. 
The extent of this range, i.e. the magnitude of the scale 
effect on the inception of breaking, might be surprising: 
the onset of stern wave breaking at full scale occurs 
only at a transom immersion almost 1.5 times larger 
than at model scale; and this is only caused by the 
difference in the boundary layer and wake from the 
bottom of the vessel. 
 In order to get some understanding of the 
strength of this effect, we compare with a very simple 
theory proposed by Banner & Phillips (1974), for the 
equally remarkable effect of wind drift on incipient 
breaking of wind waves. Wind drift is considered as a 
thin surface layer in which the velocity differs from the 
wave orbital velocity beneath, and which responds to 
the surface straining in the wave motion; somewhat 
similar to the vessel’s wake along the surface 
responding to the retardation towards the wave crest. 
They indicate that the maximum height the waves can 
attain without breaking is the height at which the 
combined surface velocity vanishes. This height is 
approximately proportional to (1-γ)2, where γ is the 
ratio of mean surface drift velocity to wave speed. 
Substituting there the velocity deficit in the wake at the 
location of the first crest, disregarding the wavy 
variations, from figures similar to Fig. 8 but for larger 
transom immersion, we get about γ = 0.4 at model 
scale, γ = 0.3 at full scale. The maximum wave height 
without breaking thus would be 36% and 49% of the 
inviscid limiting wave height for model and full scale, 
respectively. The largest values achieved in our 
computations are 30% and 41%, respectively. While 
there are many differences and approximations, at least 
this simple theory lends some support to the 
unexpected magnitude of the boundary layer effect on 
the wave breaking aft of the transom. 
 
RESULTS FOR THE INTERMEDIATE REGIME 
 
For transom-Froude numbers between the critical 
values that were determined for the dry-transom regime 



in the previous section and that will be determined for 
the wetted-flow regime in the following section, the 
flow smoothly separates from the transom, but has a 
spilling breaker on the forward face of the first wave. A 
priori it is not evident that solutions can be obtained in 
this range with a steady, surface-fitting method without 
any wave-breaking model. And indeed we experienced 
a deterioration of the convergence speed of the free-
surface updates when approaching this intermediate 
regime, as illustrated in Fig. 2. However, until now we 
did manage to obtain converged results for a few cases, 
one of which is shown in Fig. 12. For a transom-Froude 
number of Fntr = 2.77 the flow is found to separate 
smoothly from the transom. Almost immediately aft of 
the transom a steep rise in the wave elevation is found, 
with an area of flow reversal in the top of it. Further 
downstream the water level slowly rises to the top of 
the first wave crest. During the computations we 
observed that the exact location of the forward face of 
the wave is fairly ill-determined, as it tended to shift 
slowly upstream with each free-surface update, until 
convergence. We like to stress that we do not expect 
that the location of the forward face has been 
determined accurately in this particular computation. 
First of all only two grid cells are located on the 
forward face of the breaker in the present mesh, and 
therefore further grid refinement is necessary to 
investigate the sensitivity of its location to the 
discretization error. Secondly, the lack of a wave 
breaking model is bound to have an effect on the 
solution. Nevertheless we think it is striking that 
physically acceptable results can be obtained for this 
test case with a steady, surface-fitting approach in this 
flow regime. 
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Figure 12: An example of the predicted flow field at 
model scale in the intermediate regime. 

 
 

RESULTS FOR THE WETTED TRANSOM 
 
In a preceeding section results of a systematic variation 
of the transom flow have been presented starting from 
the dry-transom regime (high transom-Froude 
numbers) and going towards the regime were wave 
breaking is known to occur. In the present section we 
approach this region from the opposite direction, 
namely from the region where the transom is -partially- 
wetted and we systematically increase the transom-
Froude number, until the water reaches the edge of the 
transom. 
 The computational domain and grid lay-out is 
practically identical to the one presented in Fig. 1, with 
the sole exception that grid cells are now distributed 
over the wetted part of the transom as well. A detail of 
the mesh for wetted-transom  flow is shown in Fig. 13. 

 
Figure 13: A detail of the computational mesh near the 
transom for the wetted flow regime. 

Computations have been performed on a 
single-block structured mesh with in the 
 coarsest mesh: (  20+  5+  95) x   80 cells, 
 medium mesh: (  52+  9+189) x 100 cells, 
 finest mesh: (104+17+377) x 120 cells 
in the streamwise and the vertical direction, 
respectively. The numbers for the streamwise direction 
correspond to the number of cells on the plate, on the 
wetted part of the transom and in the wake, 
respectively. Both on the plate and in the wake cells are 
clustered towards the transom. Furthermore cells are 
clustered in vertical direction towards the plate, to 
capture the gradients that occur in the boundary layer. 
The non-dimensional wall distance y+

max < 0.40 for all 
viscous flow computations. The k-ω SST model by 
Menter (1994) has been used to model the effect of 
turbulence on the mean flow. 



The initial shape of the wave surface in each 
computation was estimated to coincide with the still-
water level. Then the RANS equations were solved, 
followed by a free-surface update. In the free-surface 
updates the water level was free to move up and down 
the transom. Upon convergence, the solution of the 
steady RANS/FS problem has been obtained. Figure 14 
shows the convergence history for a case where the 
transom-Froude number is equal to Fntr = 2.23. 
Convergence is fast, and in ten free-surface updates the 
maximum changes in the free-surface elevation 
between two successive iterations have dropped below 
dz/Lpp = 10-6. 
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Figure 14: The convergence history of the free-surface 
updates for one of the cases in the wetted-flow regime. 

 
For the present test case experimental data are 

available from Maki (2006) at model scale Reynolds 
number. We have compared our computational results 
with his measurements at the following two conditions, 
 
 Fntr = 1.92, Fn = 0.196, Rn = 1.3 x 106, and 
 Fntr = 2.23, Fn = 0.210, Rn = 1.4 x 106. 
 
Note, that these parameters are different from the ones 
used in the systematic variations of the transom 
immersion presented in other sections of this paper. 
 Fig. 15 compares the measured and the 
predicted wave elevation aft of the transom for these 
two conditions. In both cases the height at which the 
flow separates from the transom is over-predicted by 
less than 7 per cent of the transom immersion, using the 
k-ω SST turbulence model. It is found that both the 
slope of the first wave and the height of the first wave 
crest are somewhat under-predicted. As a result the 
location of the top of the first wave crest lies further aft 

in both computations. Further downstream the 
amplitude of the trailing wave systems appears to be 
captured fairly well. Despite the differences we 
consider the agreement between the computations and 
the experiments to be very acceptable. Especially 
considering that the experimental flow was reported to 
be strongly unsteady, with maximum r.m.s.-values of 
the free-surface elevation of 15 to 20 per cent of the 
transom immersion at the present conditions, while 
steady-state solutions were obtained in the 
computations. 

To investigate the influence of the turbulence 
model for this test case, the flow at Fntr = 2.23 has also 
been computed using Menter’s one-equation model. 
This model is relatively unknown but has been 
extensively used at MARIN in recent years for wake-
field predictions. It is found that the difference in the 
predicted wave elevation with the two turbulence 
models is of the same order of magnitude as the 
difference between the computed results and the 
experiments. The choice of the turbulence model has 
therefore only a limited effect on the accuracy of the 
predictions. The only exception is the predicted water 
height at the transom, which is over-predicted by 15 per 
cent of the transom immersion for the present condition 
using the one-equation turbulence model. 

With respect to the influence of the mesh 
density on the solutions, it was found that the predicted 
wave elevations obtained at the medium and the finest 
meshes practically coincide at the scale shown in Fig. 
15. In the following therefore only results obtained at 
the finest meshes will be used. 

Figure 16 presents a global view of the 
velocity field for these two cases. Clearly visible is the 
reduction of the wave height directly aft of the transom, 
followed by an increase of the wave elevation towards 
the first wave crest. Beneath this part of the wave 
surface a recirculation area is found, which decreases in 
length with increasing transom-Froude number, 
simultaneously with the reduction of the wetted part of 
the transom. The size of the recirculation area is 
indicated by streamlines that approximately connect the 
bottom edge of the transom with the location at the free 
surface where the axial velocity changes sign. 
Expressed in terms of the transom draught of each case, 
the length of the recirculation area changes from 
2.77Ttr for the case where Fntr = 1.92 to 2.65Ttr for the 
case where Fntr = 2.23. 
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Figure 15: Validation of the predicted wave elevation 
in wetted-transom flow at two transom-Froude 
numbers. 

 A systematic study of the clearing of the 
transom has been performed for the same Froude 
number and Reynolds numbers based on the length of 
the plate as in the section where the dry-transom 
regime was studied, namely 
 
 Fn = 0.164, 
 Rn = 4.5 x 108 (ship), Rn = 5.1 x 106 (model). 
 
Computations have been performed both at model scale 
and at full scale Reynolds number starting with a 
transom immersion of Ttr = 1.5 m. (Fntr = 1.34) which 
was systematically reduced until the transom was 
almost entirely cleared. Figure 17 presents the transom 
clearing as a function of the transom-Froude number. 
At both Reynolds numbers the clearing of the transom 
varies smoothly with  increasing  Fntr.   At  model  scale 
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Figure 16: The flow field aft of the wetted transom for 
the same conditions as shown in Fig. 15. 

 
the present computations indicate total ventilation of 
the transom near Fntr = 2.5. This is in excellent 
agreement with the experiments of Maki, who reports 
the same value of the critical Froude number as the 
point where the transom first entirely ventilates. 

Along the entire range of transom-Froude 
numbers it is found that ventilation is larger at full scale 
than at model scale for the same transom immersion. 
For instance at Fntr = 2, the transom is ventilated for 44 
per cent at model scale, compared to 66 per cent at full 
scale. Consequently the transom ventilates at a lower 
transom-Froude number (a little higher than Fntr = 2), 
at full scale compared to model scale. As a result there 
is a range of transom-Froude numbers where the 
transom is just cleared at full scale, with a spilling 
breaker downstream, while the flow is still attached to 
the transom at model scale. For the present test case 



this occurs for transom immersions roughly in the 
range 0.43 m. < Ttr < 0.67 m. 
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Figure 17: The scale effect on the ventilation process 
of the wetted transom. 

 
TRANSOM RESISTANCE 
The drag of the semi-infinite flat-bottomed body 
consists of frictional drag on the horizontal bottom 
surface, plus pressure forces acting on the transom. For 
the body at rest, hydrostatic pressure would act on the 
transom, giving a negative resistance contribution at 
zero speed, which is not cancelled by an equal and 
opposite force on a forebody for this sem-infinite 
vessel. So to get a physically meaningful transom 
resistance, we must subtract this zero-speed hydrostatic 
force on the transom from the result. Thus, we define 
the transom pressure resistance coefficient Ctr for the 
object considered as the sum of two contributions: 
• the change of the integral of hydrostatic pressure 

over the transom, relative to the zero-speed case,  
2

2

( / )LCstat
Fn
ς

=  

• the hydrodynamic pressure integrated over the 
wetted area of the transom,  

. ( )pdyn
z ztr

zCdyn c d
L

ς

=

= − ∫  

For a dry-transom flow, the last contribution vanishes, 
and the transom resistance is simply

2

2

( / ) .trz LC tr
F n

=  

This applies from the moment of full unwetting, i.e. 
also to cases with a spilling breaker aft of the transom. 
 It should be noted that for other bodies, with 
sloping buttocks towards the transom, there may be 
additional resistance contributions associated with a 
change of the pressure field upstream of the transom. 

 The two transom resistance contributions have 
been determined separately for the wetted-transom 
computations, for model and full scale. Fig. 18 shows 
how with decreasing draft (increasing Fntr) the 
hydrodynamic part decreases quickly, and vanishes 
when the transom is fully cleared; while the hydrostatic 
contribution is essentially constant. We have added a 
line for the total resistance in the dry-transom regime. 
We observe: 
• that the transom resistance in the wetted regime is 

less than it would be for a dry transom with equal 
immersion, at least for this particular case; 

• that the total transom resistance is somewhat larger 
for full scale than for model scale, in the wetted 
regime; 

• that this scale effect is present only in the wetted 
regime, while for a dry transom the same value is 
valid for inviscid, model and full scale alike.  
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Figure 18: Transom resistance components from 
RANS computations. Blue: Cstat; Green: Cdyn; black: 
Ctr. Dashed lines are for full scale, full lines for model 
scale. The red line at the right is the dry-transom total 
resistance. 

In a detailed inspection of the results, it was observed 
that for much of the wetted-transom regime, the wave 
elevation on the transom was nearly constant regardless 
of the transom draft; as is also observed from the 
behaviour of Cstat in Fig.18. This suggests a very 
simple analysis, which provides a basic understanding 
of the principal mechanism of the transom unwetting 
and the associated resistance, as follows. 
 
• Consider the transom stern resistance as a ‘base 

drag’ as occurs on aerodynamic shapes with cut-
off trailing ends. This base drag is caused by a 
reduction of the hydrodynamic pressure on the 
base, caused by the ‘jet-pump’ effect of the 



surrounding flow that exerts an entraining force on 
the recirculation region aft of the base.  

• Since the velocities in the recirculation region are 
rather small, we assume that the pressure is 
essentially constant here,  Therefore, basecp cp=

.( )base TrCdyn cp z ς= −  
• The waterline height on the transom is related with 

the base pressure by :  
 21/

2 ba seL F n C pζ =               (4) 

 yielding 2 21
4stat baseC Fn Cp=  

• Consistent with the model is the assumption that 
the transom is cleared at the point that the wave 
elevation on the transom according to (4) equals 
the transom draft. 

 
 We remark here that a regression formula for 
the wave elevation at the transom in the wetted regime, 
derived in (Maki et al, 2005) from experimental data 
including 3D hull models, contains a speed dependence 
according to the function , again indicating a 
constant base pressure coefficient. 

1.966
trFn

 For model scale, we have derived the base 
pressure coefficient from the computed wave elevation 
on the transom, yielding a fairly constant value of         
Cpbase = -0.23. Now the ‘jet-pump’ effect is reduced 
by the presence of the boundary layer that is shed at the 
transom edge: the thicker the boundary layer, the 
smaller the pressure reduction. Hoerner (1957) gives an 
empirical relation 3/baseCd c Cfb=  in which Cfb is the 
frictional drag coefficient for the body. If we accept the 
inverse third root proportionality and apply that to the 
ratio of frictional drags of model and full scale, from 
the Cpbase = -0.23 for model scale we obtain Cpbase = 
-0.29 for full scale, which is in good agreement with 
the computed wave elevation at the transom for full 
scale.  
 Fig. 19 then shows the resistance components 
found from this simple model. We have plotted the 
results here against the transom draft ztr/L. For low 
draft, trzζ = , and the resistance consists of the dry-
transom contribution alone, which is quadratic in the 
transom draft. From a certain value, ζ remains constant, 
the excess transom draft forms a wetted part and the 
resistance consists of a constant hydrostatic 
contribution and a linear part due to the hydrodynamic 
pressure on the wetted part of the transom. For much of 
the range the agreement with the computed transom 
resistance (the markers) is striking. The approximate 
model thus seems to provide some understanding of the 
mechanism that leads to the scale effect in the wave 
elevation at the wetted transom; and of the dependence 

of the transom drag on the draft (or Fntr) and its scale 
effect. 

We remark here that on the other hand, the 
assumption of a constant base pressure coefficient has 
limitations. When the transom is only just wetted, stern 
waves start building up. Thereby the flow leaving the 
transom curves upward, causing a further pressure 
reduction relative to the base flow mechanism (see the 
gradient markers in Fig. 19). Thus the simple constant-
pressure base drag model does not apply any more, and 
the transom is cleared earlier than according to the 
model. 
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Figure 19: Wave elevation at the transom, and 
resistance, against transom immersion. Markers: from 
RANS computation; lines: simple model. Blue: Cstat; 
Black: Ctr. full lines: model scale; dashed lines: full 
scale. 

 
DISCUSSION 
 
In the present paper a flat-bottomed ship (backward 
facing step with free surface) has been used as a model 
for the flow off a transom. Although this has proven to 
be very useful, and to provide insight in the flow off a 
transom, it is not complete. Thus, a word of caution is 
in place regarding the application of the present results 
to practical ship design.  
 In the results presented in Fig. 10 a clear scale 
effect was found on the wave length and wave pattern 
aft of the transom. Moreover, large scale effects were 
found in the inception of stern wave breaking. 
However, it can be seen in Fig. 10 that the height of the 
first wave aft of the transom is greater at model scale 
than at full scale and in inviscid flow. This is in 
contradiction with the experience that inviscid-flow 
methods tend to over-predict the stern wave system of 
ships, usually attributed to the neglect of viscous 
effects. Since the present results are shown to be 



accurate, it must be concluded that the flat-bottomed 
ship is not entirely representative of transom flow in 
practice, as it does not show this familiar viscous effect 
on the stern wave system.  
 Therefore some additional computations have 
been made, in which the aft end of the vessel was 
tapered with an angle of approximately three degrees. 
The draught of the plate equalled 0.25 metres. Figure 
20 presents the corresponding wave profiles for 
inviscid flow, and for model and full-scale Reynolds 
number. In this figure a clear reduction of the height of 
the trailing wave system is found with decreasing 
Reynolds number, similar to what one would expect for 
ship stern flows. The difference with the flat-bottomed 
plate is that here there is a pressure rise towards the 
stern caused by the form of the vessel. The 
displacement effect of the boundary layer and wake 
reduces this pressure rise, resulting in a reduction of the 
wave amplitudes generated. 
 Although in this 2D test case it is a rather 
weak effect, this reduction of the stern wave height for 
model scale relative to full scale will tend to delay the 
onset of stern wave breaking on model scale, and thus 
leads to a scale effect contribution that is opposite to 
that which we found for the flat-bottomed ship. 
Consequently, the large scale effect on the critical 
Froude number observed in this study might turn out 
differently in actual 3D cases with more general 
shapes.
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Figure 20: The scale effect on the wave system in the 
wake of a plate with a tapered end. 

 
CONCLUSIONS 
 
This study has addressed free-surface RANS 
computations for transom stern flows, considering the 
dry-transom, intermediate and wetted-transom regimes. 
We have considered a simple 2D test case, consisting 

of a barge-type vessel with horizontal bottom and 
vertical transom. Our main conclusions are: 
• Using our surface-fitting RANS method in a steady 

formulation, and using the steady iterative solution 
algorithm for the free surface, it has appeared to be 
well possible to obtain accurate solutions for the 
transom flow, in both the dry-transom and wetted-
transom regimes.   

• The present method permits to obtain well-
converged, numerically accurate steady results in a 
rather straightforward manner. Thus we have e.g. 
been able to accurately determine scale effects in 
the various regimes. 

• In the intermediate regime, in which the transom is 
cleared but a spilling breaker occurs at the front of 
the following wave, it appeared to be harder to 
obtain a converged free surface, and at this 
moment only some rather coarse solutions have 
been obtained, which are qualitatively reasonable 
but not reliable yet. 

• For the dry-transom regime, quasi-inviscid 
solutions have been computed with our method, 
which are in excellent agreement with the 
potential-flow solutions from Vanden-Broeck 
(1980), and also indicate the limiting value Fntr = 
2.26 at which the stern waves reach maximum 
height. 

• Viscous effects were found to reduce the trailing 
wave length, and more strongly for model scale 
than for full scale, due to the velocity defect in the 
wake. 

• For increasing transom immersion, and 
consequently increasing steepness of the stern 
waves, the longitudinal velocity at the first wave 
crest decreases, and eventually it quickly falls to 
zero. This indicates the onset of stern wave 
breaking. In inviscid flow this happens for Fntr = 
2.26, but for the viscous-flow cases considered 
here, this limit is shifted to about 3.3 for full scale, 
4.0 for model scale. Therefore, a large scale effect 
is present on the inception of wave breaking, and 
in a range of transom immersions a spilling 
breaker will be present at model scale, but a 
smooth flow at full scale. 

• Solutions obtained for the wetted-transom regime 
are in good agreement with the experimental data 
from Maki (2006), for the wave profile aft of the 
transom. Apparently, neglecting the unsteadiness 
of the flow observed in the experiments is not a 
serious omission in this regime. 

• For wetted transoms, some scale effect was found 
on the wave elevation at the transom, and also on 
the occurrence of transom ventilation. In a small 
range of transom immersions, there will be a 
recirculation region at model scale, but the transom 



is just cleared at full scale, with wave breaking 
occurring aft of the transom.  

• Scale effects on the transom resistance were found, 
in the wetted regime only (for this case). For full 
scale the transom resistance coefficient is 
somewhat larger than for model scale. 

• A simple transom flow model has been formulated, 
based on the assumption of a constant base 
pressure coefficient at the transom; which gives 
insight in the principal mechanism determining the 
wetted regime and its scale effects.  

• The present test case provides very useful insights 
in the characteristics of transom flows and permits 
good validations. However, it does not display any 
influence of the displacement effect of the 
boundary layer and wake on the stern pressure 
distribution and trailing wave amplitude. This 
effect will, in more general 3D cases, partly 
counteract the large scale effect on the inception of 
stern wave breaking found in the present study.  
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