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Caveats: I design and build museum exhibits for a living.  I design and build an 
occasional boat for fun.  I like math and physics, although both make my head hurt. 
Analytic solutions are elegant, but why remember ‘rules of integration’ when numerical 
methods get you close enough? I felt this way even before PC’s. 
 
Claims:  I'm pretty certain there are no general CAD or boat design programs splines 
that precisely represent homogenous beams with simple supports. I believe this may be 
one reason for the 'CAD doesn't match reality on the floor' complaints one hears about 
in boatbuilding.   
 
Simplistic Beam Deflection: Mathematical Elements for Computer Graphics by David F. 
Rogers and J. Alan Adams was first published by McGraw Hill in 1976.  The 2’nd Edition 
came out in 1989.  It is still the best resource covering the math behind 2D and 3D CAD 
geometry.  The 1’st version can be found online as a PDF.  The 2’nd version can be found 
as a used book via Amazon, AbeBooks, eBay, etc. 
 
From Chapter 5-3: Cubic Splines: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The bending formulas are part of any intro to mechanics of materials. They apply to a 
beam of unform cross section and homogenous material, under elastic deformation, 
subject to small deflections.  Note the emphases:  ‘elastic deformation’ means the 



material will return to its original position when unloaded.  Foam massaged into shape 
with a heat gun doesn’t count.  ‘Small deflections’ is subjective – closer to a loaded floor 
joist than a cedar strip bent around a boat mold. 
 
Take a  strip of material with a constant modulus of elasticity (E) and area moment of 
inertia (I), such as a wooden plank. Bend it around a series of mold stations and it is a 
beam with multiple point supports. Let each end run wild with no constraints past the 
bow and stern stations. The plank curvature will return to zero at both ends. The plank 
may be close to a curve you drew on the board or in CAD. It won’t match exactly because 
it was not defined the same way. 
 
Hull ‘planking’ material can be plastically deformed, deposited via additive 
manufacturing, or milled from a block, and the result can precisely match the CAD 
geometry.  Even an elastically deformed strip can be forced to match a respective CAD 
curve with plenty of molds and tangency constraints - up until the strip deforms 
plasticly or breaks! 
 
Actual Beam Deflection: To figure out the ‘actual’ shape a bent strip or rod takes 
requires looking into Curves of Least Energy.  A beam of uniform cross section and 
material bent through simple supports will assume a curve that minimizes the total 
potential energy within the beam.  Additional constraints or forces will increase the 
potential energy of the beam and change the shape. 
 
Online papers regarding curves of least energy are abundant. Most extend the math 
behind cubic splines and basic beam-bending formulas without focusing on real-world 
experiments.  The best derivation of the curve of least energy I’ve found is by BKP Horn, 
Professor of Computer Science and Engineering at MIT, in his 1983 paper “The Curve of 
Least Energy.” A PDF is available at: 
https://people.csail.mit.edu/bkph/papers/Least_Energy.pdf 
 
Horn presents several curve options – ellipses, the Euler Spiral, and arc approximations 
– before settling on what I’ll call the ‘Horn Curve’ - the curve whose curvature 
varies with distance along the axis of symmetry.  Interestingly, Horn’s career 
has been focused on machine vision, and he conjectures that the curve of least energy 
may be related to our sense of ‘visual fairness.’ 
 
The Experiment:  Before reading the BKP Horn paper, I thought the Euler or Cornu 
Spiral - the curve whose curvature varies linearly with arc length – 
represented the curve of least energy.  That was wrong.  Here is the experimental setup: 
 

 A 0.125” dia. pultruded fiberglass rod is constrained horizontally at lower left and 
lower right by ball-bearing V-rollers.  The pair of v-wheels at the top do not 
support the rod – they are there just to prevent it shooting up or down.  The rod 
floats in between those 2 v-wheels -  trust me on this.  

 The rod is constrained only by opposing horizontal loads on the v-wheels. The 
rod is tangent to the y-axis at each end.  The curvature of the rod at each end is 



zero.  The curvature of the rod at the apex is maximum.  This is an example of a 
curve of least energy. 

 The watermark refers to 19.875” from the horizontal baseline to the apex of the 
curve. It is 12” from the vertical axis to the left and right centerlines of the rod 
along the horizontal axis.  The ratio of height/width for ½ of the symmetrical 
curve is 1.656:1. That ratio will come up again. 

 The chart underlay is from an Excel spreadsheet I put together at first thinking 
the experiment curve would match a Euler Spiral.  It didn’t.  The Euler Spiral 
peaks at the top of the photo, above the upper v-wheels.  After discovering the 
Horn paper, I put together a worksheet to calculate the  ‘Horn Curve.’  That is the 
set of points that lay over the fiberglass rod. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The background CAD is a geometric layout of the Horn Curve using 20 sub-
intervals.  X ≠1 at Y=0 due to the low number of sub-intervals. The spreadsheet 
allows the user to select the number of sub-intervals and normalizes values to 
X=1.  The more intervals used, the closer the approximation comes to Horn’s 
analytic solution based on elliptic integrals. 

 
Conclusion: The Euler or Cornu Spiral has more potential energy than the Horn Curve. 
The Euler Spiral only corresponds to the Horn curve at very low curvature. A simple 
beam of uniform cross section and material, bent through simple supports, will match 
the Horn Curve and have the lowest potential energy. 
 



 
Below is a composite image of the 0.125” rod, the spreadsheet, and a ‘natural’ cubic 
spline curve through 3 points from my CAD program (KeyCreator).  The cubic spline is 
dark green and underspecifies the other curves.  The end conditions are ‘natural’ which 
means the curve is tangent to the y-axis and curvature is zero beyond the endpoints (the 
spline is not constrained beyond the endpoints). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is a poor fit to the Horn Curve – the ‘true’ curve of least energy.  Imagine defining a 
fantail stern in plan view with a batten through three points vs. using a ‘natural cubic 
spline’ in CAD through the same three points.  They aren’t even close.  Do the same with 
a 2nd, 3rd , or 4th order B-spline in CAD. None will match the Horn Curve without adding 
more control points, modifying tangency conditions, or ‘tensioning’ the spline. 
 
 
 
 
 



 
The image below is a composite of the 0.125” diameter fiberglass rod overlaid with a 
photo of a 0.188” diameter rod in the same jig.  They align, which makes sense: k = 
M(x)/EI.  Curvature, k, will remain the same for a homogenous beam if the material 
modulus of elasticity, E, stays the same while the bending moment, M(x), and moment 
of area, I,  increase proportionally.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Swapping spring scales or load cells for the v-wheels would show the proportional 
variation in load – apologies for not doing that. 
 
 
 
 
 
 



The Excel Spreadsheet I put together generates Euler and Horn curves with a user-
selectable number of sub-intervals (8 ≤ n ≤2048). X max is normalized to X=1 in all 
cases.  Here is a comparison chart using 512 intervals: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Here are few cells from the Euler Curve worksheet: 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Note that Y max = 1.77556945 and Total Energy  = 1.44808335. 
 
 
Here are a few cells from the Horn Curve worksheet: 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Note that Y max = 1.65798128 and Total Energy  = 1.43330287.  Recall the 1.656:1 
height/width ratio from the rod bending experiment.  Close enough. 
 
 
 



The Euler Curve is much easier to calculate than a Horn Curve over the same number of 
intervals.  I looked at mapping the Euler curve on to the Horn Curve to maintain 
accuracy with a faster calculation time. Scaling down the Euler curve along the Y-axis 
followed by a cubic polynomial adjustment on the residual Y-value differences between 
the two curves looks pretty good.  Note the yellow ‘Euler Scaled +Cubic curve’ overlaid 
on the red ‘Horn curve.’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Here’s a full worksheet, with the graph of y differences between the Euler and Horn data 
alongside a quick & dirty 4-point cubic fit to same.  It’s a poor fit from a regression 
standpoint, but it works. 
 

 
 
Additional Background: I recently discovered a monograph by R. Frisch-Fay, Lecturer 
in Civil Engineering at the University of New South Wales, titled Flexible Bars 
(Butterworth and Co., London; 1962).  A PDF can be found at: 
https://bigoni.dicam.unitn.it/varie/flexible_bars_frisch-fay_1962.pdf.  Frisch-Fay 
analyzes the deflections of thin rods in linear and nonlinear forms under many loadings. 
The solutions are based on elliptic integrals and predate Horn’s work.  I have no idea 
whether Horn was aware of Frisch-Fay’s book.  The math gives me a headache  সহ঺঻. 
 
Next Steps:  There’s a lot more to be done to make this useful for CAD or boat design. 
 

 Extend the applicability to a 2D curve through 3 points.  The curve would be 
comprised of 2 scaled sections of the Horn Curve with k=0 at each end and k1=k2 

at the intermediate point. 

 Extend the applicability to a 2D curve of least energy with 4 or more control 
points. 

 Look at simple beams or rods curved in 3 dimensions.  Torsion has been added to 
bending.  Perhaps look at it as two 2D bends from orthogonal planes. 

 Parametrically distribute longitudinal ‘splines of least energy around ‘nominally 
orthogonal’ station curves to form a surface.  The station curves may be any 2D 
family of curves. Conics are well suited, and the math isn’t too difficult. 


