

RESEARCH ANO DEVELOPMENT REPORT
AOHASTICS AHD VMERATION

0

MERIT CMIAE SSONS OF THE BERZSS S．

ty

Eugene F．Ciement

TABLE OF CONTENIS

Page
ABSTRACT 1
TMIRODUCTION 1
TRE EUTL FORMS OF SERIRS 64 2
KEITOD OF RBSISTANCE COAPUTATION AND FORM OF DATA PRESENTATION 3
DISCUSSION OF THE RELATIVE RESISTANCES OF THE HULL FORMS OF SERIES 64. 5
ATMOWTEDGENT 7
5REERMWCES 7
IIST OF FIGURES
Figure 1 - Ifines and Hull Form Coefficients for the Parent Model of Series 64 8
Figure 2 - Curves of A / A_{X} and B / B_{X} for the Modele of Series 64 9
Figure 3 - Body Plans for Three Representative Mudels of Series 64 10
Figure 4 - Variation of Volume s.oude Number with Speed and Displacement 11
Figure 5 - Reaistance-Welght Ratio versis Volme Froude Number for Three of the Hull Forms of Series 64. Resistance Values are for Boats of 200 Tons Gross Weight; $\Delta C_{f}=0.0004$ 12
Figure 6 - Resistance-Weight Ratio versus Slenderness Ratio with
Volume Froude Number as Parameter for the Eull Forms of Series 64. Resistance Values are for Boats of 200 Tons Gross Weight; $\Delta C_{f}=0.0004$. 3
Figure 7 - Relationship Between Slenderness Ratio and Displacemert- Length Ratio 16
Figure 8 - Relationship of Slenderness Ratio to Length and Displacement 1.7
Figure 9 - Values of Resistance-Weight Ratio from the Test of Model 4797, for Boat Weighte of 200 Tors and 50 Tuns 18
Figure 10- Valucs of the Ratio of R / W for Various Displacements to R / W for 200 Tons Displacement, from the Test of
Model 4797 19
Figure 11- Values of Wetted Surface Coefficient for the Hull Forms of Series 54 20
Figure 12. Values of R / W and R_{f} / W for the More Efficient Hull Forms of Series 64. These Resistarce Values are for Boats of 200 Tons Gross Weight; $\quad \Delta C_{f}=0.0004$ $E 1$
LIST OF TABLES
Table I Form Coefficients for the Hulls ot Sories 6 24
Table II Dimensions of the Models of Series 64 25
Table III Series 64 - Values of Model Spoed and Mocel Resistance 20

NOTATION

A	Sectional area
${ }^{\prime} \mathrm{X}$	Maximum sectional area
B	Breadth on waterinne
B_{X}	Breadth on wateriline at maximim sectional area
$\mathrm{C}_{\text {B }}$	Block coepficient
C_{p}	Prismatic coefficient
c_{p}	Coefficient of frictional resistance
ΔC_{p}	Correlation aliowance
${ }^{C} \mathrm{r}$	Coefficient of residual resistance, $\mathrm{R}_{\mathrm{r}} / \rho / 2 S v^{2}$
g	Acceleration due to gravity
H_{X}	iraft at maximum sectional ares
L	Length on waterline
LCB	Langitudinal location st :amt of buoyancy
LCF	Longitudinal location of center of flotation
R	Total resistance
R_{f}	Frictional resistance
R_{r}	Residual resistance ($R-R_{f}$)
S	Area of wetted surface
V	Speed in knots
v	Speed
W	Gross weight in pounds
Δ	Crose weight in tons
∇	Volume of aisplacement
P	Mass density of water

Subscripts:
m Madel

Abstract

ABSTRAC!

Values of residuary resistance from model tests were previously presented for a methodisal series of slender displacement hull form which had been tested up to bigh speeds. The present report gives values of total resistance for the hull furms of the series so that their relative merits can readily be seen. The values of total resistance were calculated for boats of 200. ton displacement to facilitate comparison with resistance data for U. S. Navy hydrofoil boats. The form of the data presentation is euch as to provide guidance for the design of high-speed displacement and catamarar hull forms.

INTRODUCIION

Reference 1^{*} presented the results of madel resistance tests oi a rethodicel series of slender displacement hull forms designed for opersticn at hign speed. Twenty-seven models were tested in the series, which was designated IIMB Series 64. The purpose of the work was to provide information for guidance in designing efficient high-speed displacement hulls and also to provide data for evaluating the performanor of other desigrs of fast craft.

The results of the tests of the Series 64 hull forms are presented in Reference 1 as values of residuary resistance coefficient and values of residuary reststance per ton of displacement. Values of wetted surface and wetted-surface coefficient are also given so that the resistance of a ship of any size can readily be calculated from the results of any one of tine model tests. However, values of total resistance for the hull forms tested are not given in Reference 1 , and therefore the relative merits of the different designs of the series are not readily apparent.

[^0]In the present report comparisons of the total resistances of the hull forms of Series 64 are presented so the the relative efficiencies of the different bulls can be readily seen. It was necessary, to calculate values of total resistance, to make a selection of the size of the fuilscale craft to which the model resistance values were to be converted. For this report, the resisiance values from the tests of the models of Series 64 were corrected to correspond to boat having a grose weight of 200 tons. This was done so that the rasulting resistarce values could convenientily be compared with resistance values for the Nivy's hydrofoil boats. [Tine average of the displacements of the first two large-scale Navy hydrofoil boats, $P C(i n)$ and $A G(E H)$, is approximately 200 tors.] Also the data are presented in such form as to provile guidarce for designing displacement and catemaran-type hull forms for liw dras.

THE HULL FORMS OF SERIES 64

As explained in Reference l, the hull forms of the serics were derived by first develoning an efficient parent form, and then maising systemailc variations of the most significant hull form parameters. The lines and hull form coefficients for the parent form are shown ir. Figur: : The parameters selected for variation in derivirg the huli foms of the
 ratio $\left[\Delta /(0.01 L)^{\hat{3}}\right]$. Three values of eanh of these parameters were selected and all possible combinations were tested; accordirgiy there were 27 models in the series.

The values of block coefficient selected for testirg were 0.35 , 0.45 , and 0.55 ; the values of beam-draft ratio were 2 , $\overline{3}$, end 4 . The rarge of values of displacement-length ratio varied tith tiock coeff: zient. 'ine values are given in Table I. The curves of sectioral arsa ard of ratio of local waterline breadth to breadth at the maximim sfetion are srow: : $:$ Figure 2. These curves apply to all the models of the serite.

The waterline leneth of each of the models was lo feer. Fher mojel dimensions are given in Table II The form pamater having he mos-
pronounced effect on model shape was the block coefficient, Bory flar: for three representative models (one for each value of block coefficif. : are shown in Figure j. Body Flars for all the motele, and airo valuer additional coefficients of form, can be found ir Reference 1.

METHOD OF RESISTANCE CO: JUTATION AND FORM OF DATA PRESENTAE:O:
Values of speed and resistance from the tests of the 20 movela of Series 64 are given in Table III. The air drag of the towing gear ha: beer. subtracted from the measured resistance values.

For this report the model values of speed and resistarce were corrected to full scale for a boat weight of 200 tons. Ihe $1947 \therefore \therefore$: friction coefficients and the standard correlation allowarce ($\left.\Delta \tilde{f}_{f}\right)$ ft 0.0004 were used in correcting the values of model resistance to full scale. The full-scale values of resistance and speed were ther corver ed to the dimensionless form of R / K and F_{∇} (equals $v / \sqrt{g \nabla^{l / S}}$). (rignte shows the relationship of F_{∇} to speed and displacement.) The values c : R / W and $F \nabla$ were next plotted for each model and curves were faired rem the spots. Examples of these plots for three of the hull forms of the series are shown in figure 5. Values of R / h for everly spaced vaiues F_{∇} were then rea off the curves. These values are plotted agairs slenderness ratio in Figure 6. (The relationship between slencer.esi raicio ard displacement-length ratio is shown in Figure 7.) Each se"ic: of Figure 6 precents values of R / W for the 27 models of the series, a, a particular value of F_{∇}. This method of presentation is such tha the relative resistances of the different hull forms are compared c. the ba.. of equal speed, equal gross weight, ard equal length. The relatic'ship $:$: $L / \nabla^{1 / 3}$ to length and displacement is shown ir Figure 8. As ar examplo of the use of Figures 4, 6, and 8, consider the problem of cissigirg a zootion bcat which is to have a speed of 45 knots . Figure l+ irava- es that the value $0: E_{\nabla}$ corresponding to this displacemer and speet is afproxirately 3.0. Accordingly, the upper part of figure $6 b$ iar be us:
to determine values of resistance/weight ratio for a range of values of block coeffi, lent, bear-draft ratio, and hill length. A hull lengin of 180 feet gives, from figure 8 , a value of $1 / \nabla^{1 / 5}$ equal to 9.4 , and he top part of Figure $6 b$ then indicates that with this value of slerderneas ra: 0 , a bloci coefficient of 0.45 , and a beam-draft ratio of 2 , the resis ance Will be approximately 10 percent of the poss veight. ifith the same slenderness ratio and tlock coefficient, and a beamedraft ra: io of 4 , the resistance will be 11 percent of the gross weight. If the leagih is ircreased to 210 feet, then from Figure $8 \mathrm{~L} / \nabla^{1 / 3}$ equals 11.0 . ir. inis case the upper part of figure $6 b$ indicatea that a block coefficient of 0.45 and a beam-draft ratio of either 2 or 3 will resuit, in a value of resictance equal to about 9.5 persant of the gross weight. The same graph showe ha a block coefficient of 0.35 , together with a beam-ratio of 4 , woula resul In a value of resistance equal to 12 percent of the gross welght, witish is 2 3 percent bigher than the resistance value just mentioned.

It should be evident that although it was necessary to selec a specific displacement in order to calculate the values of total resis'are, the graphs presented here are neve-theless applicable for jesign e"udjes of boats of a fairly wide range of displacenent both above and below zOC tons. To illustrate this point, Figure 9 compares data from a represer. a. tive model of the series (Model 4797) as corrected to a boat weigh: ci 300 tonc, and as corrected to boat weight of 50 tons. In this viven instance the difference in resistance/weight ratio for most of :he speed ranr. is about 5 percent. Figure 10 presents values of the ratic of fin for various displacements to R / W for 200 tons displacement (again from the test of Modej 4797). Figure 10 indicates that if the values of resistance/weight ratio in this report (which have been calculacd fir a boat weight of 200 tons) are used to determine the resistance ctia coa having a gross weight of 100 tons, the value will be too 10 w by about $21 / \hat{c}$ percent. This results from the fact that the frici.ional resis a coefficients increase with a decrease in size and a corresporidi ig dearoasc Ir Reynolds nunbers. However, the graphs in this repcrt are ju'tniti "e be useful chiefly f s an ald to selectirg coefficients of form rat in:i
result in efficient designs. It will te evident that their usefuliess for this purpóse will cover a wide range of displacements above and belór zo jo:a. Assume, for example, that we wish to design an efficient hull form for a boat having a gross weight of 100 tone. If we consider the result of adjustirg the valueg of resistance/weight ratio corresponding to 200 tone so that thev currespond to gross veight of 100 tons, it is evident that all the vaiues w111 be increased by about $21 / 2$ percent. Accordingly, the relative resis arce vaines will evidently not be significantly changed. Therefore, we are led to the conclusion that it is not necessary to convert the data for $200+c n s$ to each particular design displacement in order to use the Series 64 results as presented here for deaigning efficient hull forms of a variety of displacemenc.

DISCUSSION OF THE RELAMIVE RESISTANCES OF THE HJLL FORNS OF SERIES 64
The graphe for F_{∇} equale 1.0 ard 1.5 , in Figure σa, indicate that at these low speeds the resistance is affected ciniefly by variation in slerderness ratio (and therefore, displacenent-length ratio aleo). The other parameters of the series generally have considerably less effect on resiztarye. The fact that at these speeds the resista ce of round-bilge boats is determ:: f mainly by the value of slendertess ratio tas been remariced on before (in Feference 2, for example). At highor val is of speed (or F_{∇}), there it a considerable spread of the resistance values, and a ciear indication as ic he reiative merits of the different values of block coefficient and of beamdraft ratio. The poor performance (1.e., high resistance) of the models wit. tlock coefficient equal to 0.35 , is readily apparent. Also apparent is \because re consistent superiority of the models with block coefficient equals 0.45 . ihe resistance values for block coefficient equals 0.55 lie between those for block coefficients of 0.35 and 0.45 - which suggests that the optimumbles coefficient lies somewhere between 0.45 and 0.55 . The graphs of fipurf 6 ※ndicate a consistent decrease in resistance with decrease in bear-draf ratio. The extent to which bear-draft ratio can be decreased, however, is limited by stability considerations.

Figure 11 presents values of wetted-burface coefficient for the models of the aeriea. This graph shows relative magnitude of wetted surface for boats of equal gross weight. It indicates clearly that for a given value of slenderness ratio (i.c., given length of boat), the hull forms of the geries hevir. 3 a block coefficient equal to 0.35 have considerably larger magnitudes of wetted surface than the hull forms having block coefficients of 0.45 or 0.55 . This difforence in magnituce of wetted surface presumably is the chief explanation for the high resistence values of the 0.55 block hull forms.

The graphe of Figure 6 bave indicated that the huil forms which are of particular interest, because of their low values of resistance, are the ones having a biock coefficient of 0.45 , and beam-draft ratio of either 2 or 3. Accordingly, further anal:isis of these is offered by the graphs of Figure 12. In these graphs, the values of resistance-weight, ratio are presented only for the more efficient models of the series (the values and the form of presentation are the eame as in Figure 6). Also presented in each graph, however, are values of the ratio of frictional resistance to weight for the same efficient models of the series. The difference between the open symbols (R / W) and the filled symbols $\left(R_{f} / W\right)$ is obviously R_{r} / W, which is the ratio of residual resistanc gross weight.

Figure liz indicates roughly how far it is practical to g in reducire resistance by increasing slenderness ratio. The extrapolation lines drawn on the graph for F_{∇} equals 3.5 indicate that slenderness ratio for minimum resistance will be about 13.5 , and the corresponding minimum attainable resistance-weight ratio will be about 0.12. At tils point the resistance is almost entirely frictional, and the wavemaking resistance is negligible, so that there is no possibility of additional improvement by further increase in -`enderness ratio. A similar conclusion can be drawn from the graph for F_{∇} ecuals 4. At this speed the optimum value of slenderness is again about l3.5, corresponing to a minimum attainable value c : resistance-weight ratio of about 0.15 .

Figure 12 is also of interest as a guide to the design of the individual hulls for high-speed displacement-type catamarans. Assume, for exanple, tha'
a 100-ton catamaran is to be desigred for a speed of 40 knots. The dib= placement of each hull will be 50 tons; Figure 4 then shows that the corresponding value of F_{∇} is approximatedy 3.5 . The lower part of Figure $12 b$ car. accordingly be used to determine an appropriate length for the hulls. (It is assumed that the hulls are to be spaced far enough apart so that interaction effects are avoized.) As discussed previously, the resistance/ weight ratio can be expected to be minimum at value of $L / \nabla^{1 / 3}$ of approximately 13.5 . Accoringly, from Figare 8 the optimum lengin for each of the catamaran huils 1 s about 160 feet. The lower graph of Figure 12 b also indicates that the value of R / W for this lengit is about 0.12 . However, Figare 10 indicates that this value should be increased by 5 percent for a hull having a gross weight of 50 tons. Accordingly, the resistarce of each of the hulis of the catamaran can be expected to be:

$$
0.12 \times 1.05 \times 50 \times 2240=14,10010
$$

ard the total resistance of the craft will be double this amount.

ACKIOWLEDCMETMI

The alithor gratefully acknowledges the cortributions of Mr. Charles W. Tate, who performed the essential tasks of preparing the graphs and the tables of this repori.

REYERENCES

1. Yeh, $\mathrm{H}, \mathrm{Y} . \mathrm{H}_{\mathrm{L}}$ "Series 64 Resisiance Experiments on High-Speed Displacement Forms," Marine Iechrologr, Vol. a, No. 3 (Jul 290́5).
2. Nordstrom, H.F., "Eome Iests with Models of Small Vessels," Publication No. 19 of the Ewedish State Shipbuildirg Experimental Tar: (1951).

Figure 5 - Resistance-Neight Ratio versus Volume Froude Number for Thee of the Bul: Forms of Series 64. Resistance Values are for Frith of 200 Tons Gross weight: $\Delta C_{f}=0.0$

Figure $60-9 p$ equals 3.0 and 3.5
14

Figure 6c - F_{∇} equals 4.0 and 4.5

$\frac{R / L}{R / W \text { for } 200 \text { tons }}$

 o: 200 Tons er.a 50 Tcns

0.02 | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 0 | | | 0 | | | - | | | $F \nabla=1.0$ | | |
| | | | | | | | | | | | | | |

Figure 12a- F_{∇} equals $2.0,1.5,2.0$ and 2.5
Flgure 12 - Values of R / ω and R_{T} / W for the More Eiflcient Hull Forms of Series 64. These Resistance Values are for Boats of 200 Tons Gross Welght; $\Delta C_{f}=0.0004$.

Figure l2b- F_{∇} equals 3.0 and 3.5

Flgurel2c- F_{∇} equals 4.0 and 4.5

TABLE I
Form Coefficients for the thals of Series 64

LCF 1 equals 0.601 aft of $F . P$. and LCB/L equala 0.366 aft of F.P. for all models.

C_{p} equals 0.63 and C_{W} equals 0.761 for all modele.

Model No.	C_{B}	C_{x}		$\frac{\Delta}{(0.01 \mathrm{~L}}$	$)^{3} \frac{L}{E_{x}}$	$\frac{1}{2} a_{c}$
4787	0.55	0.873	2	55	11.956	5.5
4788	0.55	0.873	2	40	14.020	4.7
4789	0.55	$0.8{ }^{*} 3$	2	25	17.734	3.7
4 490	0.55	0.873	3	55	9.762	6.7
4791	0.55	0.873	3	40	11.447	5.8
4792	0.55	0.873	3	25	14.479	4.5
4.993	0.55	$0.8 ? 3$	4	55	8.454	7.8
4794	0.55	0.873	4	40	9.914	6.6
4795	0.55	0.873	4	25	12.540	5.2
4796	0.45	0.714	2	45	11.956	5.5
4797	0.45	0.7i-	2	32.5	14.069	4.7
4798	0.45	0.714	2	20	17.934	3.7
4.99	0.45	0.714	3	45	9.762	6.7
4800	0.45	0.71.	3	32.5	11.487	5.8
-801	0...5	0.71-	3	20	14.643	-. 5
4802	0.45	0.71.	4	45	8.454	7.8
4803	0.45	0.714	4	32.5	9.948	6.6
$\because 804$	0.45	0.714	4	20	12.682	5.2
4805	0.35	0.556	2	35	11.956	5.5
4806	0.35	0.556	2	25	14.146	4.7
4807	0.35	0.556	2	15	18.254	3.7
$\checkmark 808$	0.35	$0.55 t$	3	35	9.762	6.7
4809	0.35	0.556	3	25	11.551	5.8
4810	0.35	0.556	3	15	14.913	4.5
4811	0.35	0.556	4	35	8.454	7.8
4812	0.35	0.556	4	25	10.004	6.6
4813	0.35	0.556	4	15	12.915	5.2

TABLE II

Dimensions of the Models of Serien 64

Table InT = Series 64 - Valuen of Model Speed and Model Resiftence

.

Table IR $-C_{B}=0.55, \Delta /(0.011)^{3}=88$

Model 4789$B_{x} / H_{x}=2$		$\begin{aligned} & \operatorname{Model} 4792 \\ & \mathrm{~B}_{X} / \mathrm{H}_{X}=3 \end{aligned}$		Model 4795$\mathrm{B}_{\mathrm{X}} / \mathrm{H}_{X}=4$	
$V_{\text {\＃}} \quad 1$	$\mathbf{R}_{\text {m }}$	$\mathbf{V}_{\text {n }}$	$\boldsymbol{R}_{\boldsymbol{m}}$	$V_{\text {m }}$	$\mathrm{R}_{\text {m }}$
1 C .00	10.58	11.00	8.77	1.0%	0.13
$<.00$	0.41	13.00	12.01	3.01	0.91
4.01	1.56	14.00	14.05	5.08	2.33
－ 0.0 c	5.05	10.00	16.03	7.02	4.00
U．02	3.30	10.08	18.44	9．00	6.30
10.00	7．5？	13.50	13.13	11.03	9.10
13.9%	13.91	14.40	14.77	2．00	0.47
0.39	0.11	13.30	17.27	4.00	$1 \cdot 33$
3.01	0.92	3.00	0.95	0.02	3.25
ว－し2	2．3）	0.01	$2 \cdot 3$	3.01	4.70
7.02	4.0 O	7.02	4.1 ？	10.00	7.70
9.02	6.07	4.11	6.10	8.00	5.10
11.02	A． 72 ！	4.00	1．50	11.98	10.82
1．4E	0.24	0.02	3.23	12.96	12.40
$<.49$	0.64 ！	3.05	5.16	13.95	14.36
3.50	1.16 ！	10.01	7.43	14.87	16.40
4.52	1．つこ	12.00	$10.4{ }^{\prime}$	15.80	18.80
$2 \cdot 52$	2.87	－		2.49	0.70
b．51	3.60		i	3.50	1.18
7.52	4.57		i＇	4.50	1.91
13.00	11.84		－	5.44	2.75
				0.02	3.78
	－			0.50	3.63
		1		8.00	5．12
	，			4.51	1.93
	1			5.00	2.34
				7.00	4.10
	；			7.51	4.59
	．	，		8.00	4.99
			｜	8.49	$5 \cdot 54$
	i			$y .50$	6．88
	1			10.00	7.51
	1			10.50	8.37
	il			11.50	9．8t

Table e- $C_{B}=0.45, \Delta /(0.01 L)^{3}=32.5$

$\begin{aligned} & \text { Mode1 } 4797 \\ & \mathrm{~B}_{\mathrm{X}} / \mathrm{HX}_{\mathrm{X}}=2 \end{aligned}$		Mode1 4100		Model 4803	
$\mathrm{V}_{\text {m }}$	R_{m}	$V_{\text {m }}$	$\mathrm{R}_{\text {m }}$	V_{m}	$\mathrm{R}_{\text {m }}$
1.99	0.49	1.99	0.44	1.99	0.51
3.99	1.87	3.97	1.83	4.00	1.79
5.98	3.99	5.97	3.98	6.00	4.08
7.90	5.93	7.96	6.18	7.97	6.34
10.00	8.45	9.98	8.89	10.00	9.14
11.97	11.50	12.00	12.30	12.02	12.68
14.07	15.82	14.04	16.39	14.07	17.19
16.11	20.69	1e.11	21.6	16.09	22.10
0.98	0.09	0.99	0.09	0.98	0.14
3.00	1.10	2.98	1.04	<.99	1.08
5.00	3.01	4.98	2.91	4.98	2.94
U.98	4.93	0.98	4.9 -	6.92	5.05
0.99	7.2.	8.97	7.27	9.00	7.57
11.02	10.12	11.00	10.47	11.00	14.8 1
13.00	13.61	13.02	14.24	12.97	14.6e
7.51	5.40	15.10	19.17	15.08	19.6E
1.48	7.70	1.62	17.90	2.50	0.81
11.51	10.9	15.60	20.36	4.49	2.33
13.53	14.63	5.44	3.44	6.50	4.60
15.61	19.42	6.50	4.41	S. 51	7.16
1.07	0.06	7.48	5. 5 \%	10.51	9.9し
		12.50	13.21	12.50	13.69
		4.50	2.34	14.60	18.40
		3.51	1.35	3.50	1.37
		13.50	15.13	$\therefore .48$	3.48
		14.32	17.16	7.48	5.63
		1も.32	19.42	4.44	8.20
				11.50	11.60
				13.52	15.83
				15.63	20.94
,				16.07	<1.94
				10.05	21.80
				10.10	22.0t.

Table III $1-C_{B}=0.45, \Delta /(0.01 \mathrm{~L})^{3}=20$

$\begin{aligned} & \text { Model } 4798 \\ & \mathrm{~B}_{X} / \mathrm{H}_{X}=2 \end{aligned}$		$\begin{aligned} & \text { Model } 4801 \\ & \mathrm{~B}_{\mathrm{X}} / \mathrm{H}_{\mathrm{X}}=3 \end{aligned}$		$\begin{aligned} & \operatorname{Model} 4804 \\ & \mathrm{~B}_{X} / \mathrm{H}_{X}=4 \end{aligned}$	
V_{m}	$\mathrm{R}_{\text {m }}$	V_{m}	R_{m}	V_{m}	R_{m}
－2．00	0.41	1.99	0.33	1.99	0.30
3.99	1．2c	3.99	1.14	4.00	1.21
勺．98	2.62	5.99	2.56	\％． 00	2.63
7.98	4.16	7.97	4.10	3.00	4.22
Y．99	6.12	10.00	6.04	10.01	6.31
11.98	8.45	12.01	8.55	11.97	8.80
14.02	11.32	14.04	11.50	14.02	12.13
14.10	14.84	15.06	13.4	10.09	15.41
0.99	0.05	10.10	15.24	0.99	0.01
3.00	0.74	0.99	0.01	2.98	0.77
4.98	1.87	2.99	0.67	－． 00	1.91
c．ts	3.27	4.99	1．8．	7.00	3.31
8.97	4.95	7.00	3．25	8.99	5.14
10．0を	7.14	0.99	4.94	11.00	7.52
13.00	5.78	10.97	7.2 ？	13.04	10.40
14.07	11.37	13.00	9.94	1כ．16	14.04
12．09	13.15	15.62	14.34	3.48	$4.0=$
9.42	5．4？	is． 4 E	4.54	4.46	5.60
10.50	6．5\％	1.43	5.50	13．50	0.83
11.50	7.72	10．5？	6.5 \％	11.50	3.1 ¢
12.50	9．0．7	11.49	7.83	12.47	9．5と
13.50	10．53	12.50	9.05	13.49	11．3t
14.59	12.31	13.50	10.51	14.59	12．9
1＇3．57	13．9，	14.65	12.4 e	1 1．60	14.95
2.50	0.54	1.50	0.16	3．9？	1.22
3.50	$0.9 i$	1.99	1.17	1．99	5.14
4.48	1．52	10.00	6.04	ヶ．99	6.30
5．48	2．1！			13．53	11.36
t．4 ${ }^{\text {c }}$	2．8：－				
7.50	3.60				
L．48	4.47				

TableIg $-C_{B}=0.35, \Delta /(0,1 L)^{3}=35$

$\begin{aligned} & \text { Moded } 4808 \\ & \mathrm{~B}_{X} / \mathrm{H}_{X}=2 \end{aligned}$		$\begin{aligned} & \text { Model } 4808 \\ & \mathrm{~B}_{X} / \mathrm{HX}_{X}=3 \end{aligned}$		$\begin{aligned} & \text { Model } 4811 \\ & \mathrm{~B}_{\mathrm{X}} / \mathrm{H}_{X}=1 \end{aligned}$	
$V_{\text {团 }}$	R_{m}	$V_{\text {m }}$	R_{m}	$V_{\text {間 }}$	$R^{\text {m }}$
1.00	0.10	1.00	0.17	1.00	0.15
2.00	0.55	2.99	1.24	1.99	0.51
3.01	1.20	5.00	3.37	3.00	1．31
4.01	2.10	7.01	5.78	4.00	2．16
勺． 02	3.52	9.00	8.64	5.00	3.80
6.03	4.72	10.99	12.20	6.02	4.87
7.04	5.91	1.98	0.47	7.00	6.20
0.01	7.17	3.98	2.05	8.00	7.54
9.04	8.62	6.01	$4.5 t$	8.98	9.14
10.04	10.30	7.98	7.22	10.00	$11.0 月$
11.05	12.05	10.00	10.36	11.00	13.01
12.04	14.02	12.00	4.28	12.00	15.21
13.07	16.19	4.50	2．7：	12.96	17.58
14.02	18．5	5.55	4.01	13.90	20．1」
－1．49	0.27	6.50	5．13	14.92	22.82
2．50	0.84	13.02	16．54	1 －91	25.57
3.50	1.63	14.00	19．0＇．	3.98	$2 \cdot 14$
4.52	2.80	14.98	21.73	10.5%	12．1ヶ
5.59	4.23	15.95	24.50		
6.53	5．2．	14.00	13.10		
7.52	0．3：	14.50	20.35		
0.52	7.7	4.00	2．0r		
4.55	9．3¢	3．00	3．3e		
10.56	11．05	6.01	4．54		
11.54	12.87				
12.57	14.94				
13.55	17.17				
14.51	$19.7{ }^{\text {c }}$				
13.05	20．65				

Table $\bar{n}-C_{B}=0.35, \Delta /(0.01 L)^{3}=88$

$\begin{aligned} & \text { Moded } 4808 \\ & B_{X} / H_{X}=2 \end{aligned}$		$\begin{aligned} & \text { Model } 4808 \\ & B_{x} / 7_{x}=3 \end{aligned}$		$\begin{aligned} & \text { Model } 4812 \\ & \mathrm{~B}_{\mathrm{X}} / \mathrm{H}_{\mathrm{X}}=4 \end{aligned}$	
V_{m}	R_{mm}	V_{n}	R^{n}	$V_{\text {m }}$	R_{m}
1.00	0.1 ?	1.019	0.13	0.99	0.12
3.00	0.9?	3.01	0.97	1.98	0.4,
5.02	2.43	5.02	2.49	3.03	1.03
7.01	4.3 ,	7.02	4.14	3.98	1.67
9.00	6.5\%	9.05	6.87	5.00	2.65
8.96	6.61	11.05	9.81	0.00	3.60
11.00	9.47	13.00	13.30	7.00	4.6 .
13.0:	13.24	1-. 00	17.54	7.99	5.81
14.92	18.54	1.99	0.47	8.99	7.21
2.01	0.45	4.00	1.55	9.99	0.87
3.98	1.50	6.01	3.40	11.00	10.44
6.02	3.44	8.02	5.44	11.97	12.24
8.0 ?	5.47	10.10	4. 23	13.01	14.28
10.00	8.04	11.99	11.48	13.97	16.31
-12.02	11.33	13.95	15.41	14.94	18.52
4.52	2.00	15.91	19.81	15.91	20.84
5.40	2.97	4.00	1.55	11.49	11.2 s
-98980	3.40	4.50	1.99	12.48	13.17
c. 51	3.81	4.98	2.48		
7.52	4.89	5.50	2.97		
-. 00	2.51	0.00	3.38		
5.49	2.93	0.50	3.88		
C. 01	3.43	6.99	4.37		
0.50	3.8:	7.49	4.90		
7.02	4.31	7.99	5.42		
12.98	13.31	10.00	8.20		
14.00	15.07	10.50	8.97		
13.90	15.16	10.97	9.70		
14.94	17.46	11.50	10.63		
14.49	16.1心	$11.9{ }^{\text {c }}$	11.30		
		13.05	13.30		
		14.96	17.55		
		8.49	6.08		
		+. 00	0.72		
		3.50	7.48		

$\begin{gathered} \text { Model } 4807 \\ \mathrm{~B}_{\mathrm{X}} / \mathrm{HX}_{\mathrm{X}}=2 \end{gathered}$		$\begin{aligned} & \text { Model } 4810 \\ & 8_{X} / \mathrm{HX}_{\mathrm{X}}=3 \end{aligned}$		$\begin{aligned} & \text { Model } 4813 \\ & \mathrm{~B}_{2} / \mathrm{H}_{\mathrm{X}}=4 \end{aligned}$	
$V_{\text {m }}$	R_{m}	$V_{\text {m }}$	$\mathbf{R}_{\text {m }}$	$\mathbf{V}_{\mathbf{m}}$	R_{0}
1.00	0.10	1.00	0.10	1.00	0.10
2.98	0.71	2.00	0.33	3.00	0.68
5．0し	1.79	3.00	0.68	5.00	1.85
7.01	3.17	4.00	1.02	7.01	3.27
9.02	4.94	b． 00	1.74	9.00	5．27
11.03	7．4t，	0.00	2.50	11.02	7.60
12.99	9．81	7.02	3.19	13.00	$10.8{ }^{\text {e }}$
15.02	12.91	8.00	4.02	14.92	13.87
1.96	3.70	8.99	5．65	1.98	0.31
3.97	1.10	10.02	7．13	3.98	1.13
0.02	2.40	11.00	8.32	0.00	2.46
Y． 01	3.96	11.99	8.60	7.99	4.12
4.98	5.99	13.00	10.21	9．95	6.42
11.97	8.38	13.99	11.63	12.00	9.00
14.02	11.35	14.95	13.31	13.95	12．0ど
15.94	14.55	1.50	0.19	15.90	15.8 c
1.48	0.20	2.50	0.49	11.99	9.00
3.50	0.90	3.50	0.88	4.50	1.45
3.55	2.07	4.52	1.35	5．50	2.14
7.50	3.50	勺．55	2.14	13.00	10.51
9.51	5.41	6.51	3.82	5.00	1.72
11.48	7.75	7.50	3.70	7.00	3.27
13.44	10.41	0.50	4.43	15.92	15.81
15.41	13.63	¢． 50	5.57		
2.48	0.64	10.50	6.87		
4.51	1.45	11.49	8.04		
6.50	2.77	12.48	9.80		
8.50	4.37	13.48	10．88		
10.53	6.50	14.40	12.41		
12.48	9.10	13.41	14.10		
11.43	11.9%	11.00	7.32		
		8.99	5.0%		
		1.99	6．1！		
		11.50	7．9！		
		15.95	15．1＝		

Security Classification

DOCUMENT CONTROL DATA．RED

：O A AILABILITY LIMITATION NOTICES

SUPPLEMENTAMY NOTES
IS BOONSORING MILITARYACTIVITY

Zurea：of こhips

3 BSTRACT

Valies 2 residuar：resistarce from mocel tests nere pre：ionsl neo． sented for a methodical semes of slerier disziscemort hill for：a rith in ia isen testei un to rish speeis．The present report gives values on totá resistance for the rinli forms of the series so fhat their relative merize can reaijil：be seen．The values o：tota resistarce were calzilater ：$: n$ coats of こう0－ton displacement to facilitate corparison inth resistaroc jata

9
"e":
Secufliv Classification

[^0]: * References are listed on page 7 .

