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Abstract. A regression analysis yields a new formula for phediction of the resistance of the models of tI8YBS that
seems to be superior to the original Delft-methiadure comparisons with more test results haveltdf the new formula is
also better when applied to other hulls, not caergd in the regression.

NOMENCLATURE

Auvet Wetted area of canoe body LwL Length of the actual water line at rest with

Aw Water plane area trimming moment applied

Ax Area of max. section = maximum Lwio Length of the designed water line
immersed area of all cross sections r Pearson's correlation coefficient

BM Longitudinal metacentric height R Resistance force

BwL Maximum beam in the water plane R? Coefficient of determination ¥

By Beam in the water plane at max. section Re Reynolds numbed,-Ly, /v

Cp Prismatic coefficient Tu Turbulence level

Cwp Waterplane area coefficient Twi Maximum draft of canoe body

Cx Maximum section coefficient Tx Draft of canoe body at max. section

D equivalent diameter for body of revolution U Water speed at edge of boundary layer

Er Exit angle of the rocker at aft ehgl, U, Ship speed

Fn Froude numbed,, / (g-Lw)"? u',v',w' Fluctuating velocities

FP Forward perpendicular = forward ehg, Ve Displaced volume of canoe body

g gravitational acceleration = 9.81 /s A Part ofVcg forward of max. section

G wetted girth-length of the cross section V, Part ofVcg aft of max. section

le Incidence angle at entrandeR) o Flare angle at max. sectionlat,

Ly Distance fronFFP to max. section y Deadrise angle at max. section at keel

L, Distance from max. section to aft elng, p Density of the water

Lch Distance fronFP to centre of buoyancy v Kinematic viscosity of the water

Lcf Distance fronfFP to centre of flotation

1. INTRODUCTION

Most velocity prediction programs (VPP) rely on ttegression formulas of the Delft Systematic Yadhtl

Series (DSYHS) [1] for the estimation of the bandl hesistance. The basic method of the analysth@towing
tank data was already established in 1973 by PsofeGerritsma. An estimate of the viscous resigtanas
subtracted from the measured total resistanceeofrtbdel. The remaining difference, the residuasjstance,
was correlated to the geometric properties of thie Bince computer power has dramatically incrdasethe
last 40 years, there are more sophisticated walaytto predict the viscous resistance than thelsimethods
of 1973. The aim of this paper is a critical reviefithe Delft-method and an investigation of otberrelation
methods for the hull resistance, including the ltesaf the newest research in statistics, with pefially better
goodness-of-fit to the data. This new approachnly possible because the researchers at Delft hityeof
Technology decided in a really generous act to ntlaéeentire experimental data sets of all testéld hwvailable
to the public. Since the beginning of 2013 the dataline [2].

There are more test results of systematic yachtdaules available in the literature, but none ldn is as
complete as the experimental data from Delft. Btittiet al. [3] published the results of systematists of
IACC-yachts at INSEAN. All the relevant data is plipd but with the exception of the varying trimmin
moment that was applied during each run. With thiml information missing, these experiments can
unfortunately not be used for a regression analysis

Interesting work is reported by Huetz and Guillgdy who created the database for the regressidrfram
towing tank experiments but by CFD. They used tA&RE free-surface solver ICARE and claim to get@en
reliable database with CFD because they avoid tha@sorement errors of the towing tank. The drawlsthe
high computing effort that only allowed the simidat at three Froude numbers, namely 0.35, 0.5 a68. 0
Huetz and Guillerm checked the validity of the teswith three models out of the DSYHS; a diagramhown
for Sysser 25. In this diagram the total drag valfrom CFD and towing tank agree within 5% with the
exception ofFn = 0.35, where the CFD-prediction is 20% too higheir published coefficients were used by
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this author to predict the residuary resistanceSigsser 71, 72 and 73, because these hull formsi@se to the
ones used in [4]. Surprisingly the errors weredaithan 50%. A similar experience was made by vaarib[5]
who compared the residuary resistance of 38 modélshe DSYHS with CFD-results computed with
SHIPFLOW. Even though he worked together with thealopers of the code at Gothenburg, he was nettabl
explain the large discrepancies between measursraadtpredictions. Atn = 0.35 e.g. he found a deviation of
+ 50%. At Delft a repeatability of 2% is claimed fine test results [6]. At this time it is not aleghether CFD-
results are accurate enough to form a databaserfgression analysis.

2. RESISTANCE COMPONENTS OF THE HULL

In his first step Gerritsma followed Froude's metheroude's work, published in 1868, marked therreégg of
scientific ship model testing. The towing tank beeathe most efficient design tool in ship optimiaat Details
can be found in any text book on naval architecieug [7]. The basic idea is to split the measuicdl
resistance of the model into a viscous part, whidles with the Reynolds number, and into a wavdnmgaart,
which scales with the Froude number. The extrapdlatalues at full scale are then added to givetdked
resistance of the full size ship. The determinattbrthe viscous resistance was the subject of getetebates
over decades during the meetings of the Internatibowing Tank Conference. It is not possible ttrgkate or
measure the true viscous resistance of the maat#yding the effects of sinkage and trim and of ¥heying
wave height along the ship; instead the value terdened for the still water level. The remainiregistance
component, after the subtraction of the viscousmede, contained therefore not only the wave making
resistance but also some small viscous "left ovélrkis remainder was therefore not called wavestasce but
more appropriately residuary resistance. Becauskeo$mall viscous effects that are contained énrdsiduary
resistance, Froude scaling to full size is nevé&Yi@orrect.

The Delft-method is based on the ITTC procedurgd®7. The viscous drag according to the ITTC is moted
from:

Rie =2 PU, " [Cppre L+ K)TA, @

Cirrc is the friction coefficient of the ITTC-57 corréilan line and k is the form factor determined exmpen-
tally by Prohaskas's method. It is questionablinéf ITTC-57 correlation line will give good resuftsr yacht
like bodies. It is based on the skin friction ddtfplates and was developed for merchant maringelesvith
long parallel sides that do not exist in yachtse Trelft-method tries to compensate for that by giginly 70%
of Lw.o in the determination of the Reynolds number. Thlifred friction coefficient used in the Delft-fouta
that replace€rrc reads:

L0075 el Ul 071, @
(log,, Re-2) v

The Delft-method does not use a form factor. Tiseatis form drag is therefore part of the residuasjstance.
This does not pose a problem for the correlatiothefdata at model size, but it will introduce aroewhen
extrapolating to full size, since viscous drag eeslduary drag are scaled differently.

With today's computing power there is no need aonyento rely on the ITTC-57 correlation line. Evenfast
VPPs it is possible to include a simple boundayglacalculation that determines the viscous resigtavith a
higher accuracy than the correlation-line-methofisthree-dimensional integral boundary layer calttata
method for bodies of revolution is described in [B) make use of this fast method, the hull is apipnated by
half a body of revolution. The equivalent diamdtarthe body of revolution can be determined in yndiffer-

ent ways. A comparison with all the models of thelfBseries gave the best results for a combinatiia is
formally identical to the definition of the hydrauidiameter in pipe flow. For each cross sectian ehuivalent
diameter is calculated from:

D=—— (3

The velocity at the edge of the boundary layeraleh from the potential flow solution [9]. The diféntial
equations for the boundary layer are then solvedhayscheme of Stoer and Bulirsch. The solutionv.of
Karman's momentum equation yields the local skictiém coefficientc; (the dimensionless form of the shear
stress) and the b.l.-momentum thickness as a fimatf the position along the hull. Figure 1 compgatiee
calculated local skin friction coefficient alongethull with that of flat plates of equivalent lehgind different
positions of the trip. There are two active bougdayer trips on the model, one 0.02m and the atiner 0.35m
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Figure 1. Local skin friction coefficient at 1.77 ns ship speed

behind the bow. The second trip is not active anftht plate, because at the plate without floweteration
natural transition occurs at 0.2m. It is obvioustttine local skin friction on a flat plate is sificéntly different
from the development af along a ship's hull. In the ITTC procedure thedearto correct this flat plate drag in
such a way that the result agrees with the hulj ésgut entirely on the form factér It is not surprising, that no
simple method exists to predict the value of tloigrf factor. The problem increases if b.l.-trips ased. The
experiment gives no indication, which one of thpstis causing the transition. At Delft they assdrhgrbulent
flow, starting right at the bow.

The implemented integral computing method perfoamsntegration of the local shear forces from bowtern
which yields the total skin friction drag accordittg

L
R = [4pU G [dx 4)

0

As this is only the skin friction drag, the additiof the pressure drag is needed to give the tidabus drag.
When an integral b.l.-calculation is employed tb&ltdrag is usually calculated directly from thementum
deficit thickness at the tail of the body, usinther Squire-Young's or Granvilles's [10] formuldyigh make use
of v. Karman's momentum equation. In our case witrery thick b.l. at the stern, that is often safed, the
application of this formula results in unrealistiglues for the total drag. v. KA&rman's momentumaéqun is
only applicable if the pressure at right anglethiowall is constant within the b.l. This is a st assumption
for a thin b.l., but in the very thick b.l. at teeern with strongly curved streamlines this assiongs violated.
Patel and Guven proved this experimentally [11]Jolin case it is therefore preferable to rely onwvbey robust
integration of equation 4 and add to this an estnar the pressure drag. Hoerner [12] proposestfeamlined
bodies of revolution a form factor that consistdved terms. He explains that his first term takeseof the drag
increase due to the supervelocity along the custezhmlines and the second term simulates the yyeesisag
due to the thickness of the boundary layer at aiiethiat reduces the curvature of the streamlimestherefore
the pressure recovery. This second term is a getichate for the required pressure drag, in casdlohe is
attached. The viscous drag is therefore calcultted:

3
I%/isc = Rf l+ 7 EE;T(J (5)
2

Should the b.l.-calculation detect flow separatidoerner's formula for the base drag is used idste&alculate
the pressure drag. This method was successfuligatall against test data from the wind tunnel ded @ith
CFD-results of a RANS-solver.
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Figure 2. Calculated and measured drag coefficiestfor Sysser 23

The comparison of the Delft-method and the b.lcdaltion is depicted in figure 2. Sysser 23 is adyexample
that shows the influence of the sand strips and th@Delft-method (equation 2) overpredicts thewis drag
at low speeds. The drag coefficient is here defaed

c=— R (6)
1WA,

The viscous resistance calculated by the Delft-ogkth definitely too high &@n = 0.1; it is even higher than the
measured total resistance, which is the sum ofous@and wave drag. The reason for the inadequadiyeof
turbulent friction coefficient is the large extasftlaminar flow at low speeds with these small medat Delft,
they tried to eliminate the laminar flow by usingd.dxips in the form of carborundum sand stripppléed
vertically to the hull surface at three fixed distas from the bow. Each of the three strips wamg&0wide and
the distance between the strips was 240 mm onntiadl snodels and 330 mm on the large ones [13]. Wéret
one of these three strips is capable to trip tbe firom laminar to turbulent depends on the Reymaidmber,
based on the momentum thickness of the b.l. A ptiedi model for this type of flow is described 4. The
viscous resistance curve from the integral b.cwdakion shows, that the transition point is jungpfrom the 3rd
roughness strip to the 2nd at a Froude number abdveA second jump occurs between 0.2 and 0.26nwie
transition point moves from the 2nd to the 1stpsat the bow. These sudden increases in the vigesistance
are also visible in the total measured resistawbeyeas the curvature of the residuary resistayseboth. The
residuary resistance as a function of the Froudebeu for all the models from no. 1 to no. 73 watedained
with this method.

An input parameter to the b.l. calculation is thbtilence level in the flow around the hull. Itisfined as:
|2+ 12 +W 3
Tu=2 v (7

- U

3

The fluctuating velocities are created by two diéf@ mechanisms. One is the breaking of the bowewathe
vorticity in the surface layer of the bow wave daoreaseTu up to a value of several percent [15], but it is
dissipated quickly and does not reach the loweasparthe hull. To account for the bow wave effectninimum
value of Tu = 0.3% is prescribed in the calculation. The ofloet cause of the fluctuating velocities are esldie
in the wake of the towed model that persist intdigk a long time after the run. These eddies findisipate,
but the waiting time between the runs determinedoaisly the turbulence level in the tank. If theating
speeds of the eddies are regarded as constangdhenrun, thenTu will decrease as the towing speed
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increases. The importance B is well known to practitioners for a long time. his comment at the 6th ITTC
in 1951 Mr. Ferguson from Clydebank explained [16]:

We tried that {i.e. a trip wire}, and certainly gah increase in measured resistance, but the valeresnot steady. We
studied these tests and varied the intervals oé tiretween successive test runs. There was muckegtierence
between the curves so obtained than between thestor the naked model and for the model with wige. To us it
appeared that the quality of the degree of intetnebulence in water was as important as the typéudbulence
stimulator applied to the model. The "Monday mognfeeling" has been quoted at times. By that | ntbaninterval
over the weekend when the water has been allowkd tuietly. This affects the first runs you do Blonday morning.
We always ignore the first three or four runs weottoMonday morning, until the water gets into whaall a uniform
state of consistent turbulence, and after thatekelts will be comparable. Even during the lunetiqgu and the first run
after lunch you do get a difference if you repeapat at the same speed.

At Delft they used a waiting time between runs bfriinutes, which seems to be industry standard.t\¢ha
unusual is the statement that they never repeatad during a test campaign [6]. Without these &bétis very
difficult to catch outliers. Several outliers aiM@peeds could be explained and corrected by ati@riof Tuin
the b.l. calculation. In general the vallie= 1U,, (speed in m/s yieldSuin %) is a good starting point for the
calculation. This value was used e.g. for the datmn that produced figure 2.

3. GENERATING THE DATABASE

In the next step the relevant geometric dimensafrthe hull and all other properties that mightushce the
residuary resistance must be identified and listds is the most crucial part of the whole procdésan
important parameter is left out in this step, tberelation can never be successful. To be on tfee sde it is
best to include too many parameters at this stefpsart out the irrelevant ones later, based orctneelation
results.

3.1 Selection of the parameters

The Delft-method [1] uses the following physicabgtities:Res, U.,, Vcg, o, 9, Lwio Bwe, Tee, Lcb, Lcf, A, Aw.
A factor analysis [17] of these independent vagabkvealed that 75% of the variance in the vaaghtross all
models could be explained by only two factors. Tihilicates that the so called independent varialbhed are
used to predict the resistance force (the dependaidble), are statistically not independent. Ehisr a high
risk, that the chosen variables are not sufficfenthe prediction of the resistance. The choseiakies have in
common that they describe the hull form in a mdobag way, e.g. over all length of the water linedaotal
volume of the canoe body, whereas the wave malkimgare linked to the detailed local propertieshaf hull.
Manen & Oossanen [7] show four different wave systehat are generated by the local curvature ohtiieat
different stations. Andersson [18] and Lin et &B][subdivided the hull in a forward and rear @ard calculated
the geometric quantities separately for each pattied hull. Andersson also added several angleasuared in
the plane of the cross sections and also in thervpdéne. Fung [20] used similar local variabléb@lgh not as
many and not as detailed as Andersson. The infieh@n additional trimming moment was modeled elftD
[21] as a function of the height of the longitudingetacentre. The correct quantity would have keerheight
of the metacentre above the centre of gravity. tiofately the location of the centre of gravitynet known for
the models. The height above the centre of buoy@idyis used as a substitute. Initially only the fils
quantities in the following list were used, but faasons that are explained in chapter 5.1 the aurab
parameters was not sufficient. Further parametetsright have an influence on the resistance wetaded.
After several trial loops the list of relevant gtiies is now as follows:

RreSa Uoo: VCB!/D' V, g! LV\/L! BX! TX! LCb- LCfu &1 AN: Vl- Ll! IE- ER! BMa UFP! a,y

The maxim value8,,. andT¢g used in [1] are replaced by the values at the miai area sectioBy and Ty to
produce consistent dimensionless variables in the step. The incidence angle at the entrdpds the angle
between the waterline and the symmetry plane, nnedsuo the water plane at FP. Similarly the exaker angle

Er is the angle between the keel line and the wdtarep measured in the symmetry plane at the aftofile
water line.a is the flare-angle at the still water level anis the deadrise-angle, both at the maximum area
section. The speedrr close to the hull surface 4% bf,. behind the forward perpendicular is added because
Raven [22] proposed to use the pressure coefficdérthe double-body potential flow as an input tee t
computation of the wave resistance at low speels. pressure coefficient is defined asUlH{U.,.)? and the
speedJgr is taken from the potential flow calculation ofaglter 2 above.

A question that needs to be discussed is the inflei®f the height of the towing point above thi wtater level.

This height equaled in the experiments a value éetm8% and 20% of thgy, o The varying lever arm creates
different trimming moments from model to model; ihfluence of this variation was not corrected 1. [For
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some test runs an additional trimming moment ab apeed was applied by adjusting a movable weigthe
centerline of the model. To compensate for thes@mttans the following process is used for the ravalysis:
The trimming moment caused by the lever arm oftthreng point relative to the center of effort okthydro-
dynamic drag force and any additionally appliechiring moment at rest are added together. The sinkad
trim angle are calculated for this combined trimgnmoment in the hydrostatic program. All requiregbignetric
quantities are then determined for this trimmedtmosat zero speed. This process avoids the awhddf further
variables like towing height or trimming moment. eTkertical position of the hydrodynamic drag foise
assumed to be at the geometric center of the wsttddce. This is an acceptable approximationterttare hull
below planing speeds. On an appended hull thewlilhgct at a much lower position.

There are files available in [2] with the geometftsets (surface-points) of all tested hulls. Frihis source it
was possible to calculate the required geometrgmtities for all models.

3.2 Dimensional analysis

It is possible to reduce the 21 parameters by ttimerigh the introduction of dimensionless variablEhe tool
for this is the dimensional analysis. The choicéhefparameter combinations is arbitrary, but hefpful to use
comparisons with analytical results as much asiplessThe dependent variable can be compared tdhéllis
integral for the wave resistance. For a fixed Feomdmber the integral is in principle a functiontbé hull

offsets: R« =1 [pW,* [F (offsety. Therefore a good dimensionless form of the degendariable is
Y= R

es (8)
1pw, e

L
It bears some resemblance to Telfer's resistanedficent, but here the variable is dimensionle$be
independent variables adopt several named dimdas®rparameters already in use in naval architectur
Becausd.y, = L; + L,, these three lengths can be interchanged in therdiionless variables. The same applies
to Veg = V1 + V. For the dimensionless volume there are threelgeserms in use:

Vl Vl}é Vl

Ll3 Ll AX DI‘l

The first version is the direct outcome of the disienal analysis, the second is an often used furiower

order and the third is the prismatic coefficienthiéh of these versions will give the best correlatcan not be
known up front. The prismatic coefficients are stdd in a first try, the alternative forms will lohecked in
parallel. Similarly there are three forms for thmensionless water plane area:

AN VCB% VCB
LB A AT

The first version is the water plane coefficiete second is the form used in [1] and the thircsieer is the
vertical prismatic coefficient. In addition it isopsible to define split versions for the fore- aafter-body
separately. All in all these are 9 possible versidn preliminary tests the quality of the correlatwas checked
with all 9 versions and the winner was the watempl coefficient. The complete list of the 17 indegant
dimensionless variables for the further analysis is

Vi Vs

A, Lcb Lcf B, T

Co=—t_ =Yoo= ¢ =A  cp=lt® cpt B I
AX l:l]'l AX l:[LZ LWL DBX BX l:rX LWL LWL Ll Ll
2
i w Re= ﬂ Fn= Uw I . ER CU - u FP2 a y (9)
L Lu v g, U

The four angles are already dimensionless and edwpt as they are. The pressure coefficient igdatedCy
as the traditionaCy is already in use for the prismatic coefficient.

3.3 Statistical inspection of the database

Because of varying test speeds and the changg, oy the trimming moment, the resulting Froude nurabe
were unevenly distributed. For the statistical gsial it is required to have sample points at discend fixed
Froude numbers. With the means of rational cublinsp a new database was interpolated for all se$a(9) at
a maximum of 15 fixed Froude numbers from 0.10.800This resulted in 1047 independent datasetstheo
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highest Froude number there were only 17 test pamtilable. As this number is too small for thenpled
regression analysis, the resistance curve of 1®feadas extrapolated frofn = 0.75 toFn = 0.8. This brought
the total number of datasets up to 1066.

All textbooks on statistics recommend an inspectiérthe database before starting the regressiotysasa
Special attention should be given to the problentalfinearity. This arises when some of the indejgen
variables are almost linearly dependent. To ilatstithe problem one can imagine a sample of poimsx,) in
space withy depending linearly (only to keep the example sephmn the variables;, x. If these points are
dispersed properly, it is possible to draw a unigu@ne through these points. Xf, x, become linearly
dependent, the points are gathering along a lidetlaa orientation of the plane in space is not stigulefined
any more. Small changes in the variables (measureensors) can even flip the plane. A measure dinsarity
is the variance inflation factor VIF [23]. If it egeds the value of 10, the regression will be &dteby colline-
arity. Table 1 lists the results féin = 0.25. For other Froude numbers the results eaetipally identical. The
first impression is depressing and many would rédgfae database as useless, but the case desetessraook.

X Re | Coi | Coo | Cx | Cup | LCB 'I'_%EI‘:’ Bl | T | T | e | Ex | @ | v | cu BI'Y"
VIF 76| 156| 26.7| 485| 17.2| 47.8| 41.1| 32.9|100.8|102.8|106.1| 90.4| 25.7| 39.9| 16.3| 353

Table 1. Variance inflation factors forFn = 0.25

The VIF will grow large, if the independent variabin question is collinear with just one of the esti5
independent variables. With so many variablesriklsis high. In the final regression analysis oalgubset of
the variables will be used and it is possible tovéeredundant variables out. A source of collingasi also the
process of the dimensional analysis. A single geéoméength, e.g.Ly, or a part of it, is used to make all
variables dimensionless. As a result, all varialilase a common denominator, which fosters collityear
Another cause of collinearity is a small spreathefvariables. Only half of the variations of theigbles come
from the large changes from one model to the otherother half is caused by the change in thairtiim at
zero speed. These trim changes produce only minanges in the independent variables, which leads to
reduced spread.

A helpful numerical experiment was conducted byldaj24]. A Monte Carlo simulation produced the uks
that the ill-effects of collinearity become onlypapent, when the coefficient of determinati@h between two
independent variables is larger th&f of the dependent variable in relation to the $ait of the overall model.
Table 2 was computed to test for this criteriordifiplays the coefficients for the cross-correlatietween 15
independent variables fdfn = 0.25. The worst case is the correlation betwgemd Cyx with a value of
r = -0.942 i.eR% = 0.888. The value aR? for the complete set of the 15 variables of tabia relation to the
dependant variablé is 0.931 and therefore slightly higher than thesteross-correlation. According to Taylor
this collinearity is still harmless. The situatifor all other Froude numbers is similar and thdicehrity seems
to be tolerable.

BMIL | Cy y a | Er | le | T | T | B | Y2 cB | Cwe | Cx | Ce | Cm

Cr1 -0.16 | -0.61 | 0.38| 0.17| 053 | 0.74| 0.14| 0.34| 059 | 0.07 | -0.65| 0.52 | -0.50 | 0.36 1

Cr2 0.04 | -0.20 | -0.06 | 0.15| 0.29 | 0.39 | -0.06 | -0.10 | 0.15| 0.22| 0.30| 0.77 | 0.03 1

Cx 058 | 0.57 | -0.94| 0.09| -0.80| -0.75 | -0.68 | -0.77 | -0.65 | -0.71 | 0.55| 0.12 1

Cwp | -0.03|-0.33| -0.16 | 0.07| 0.23| 0.41| -0.14 | -0.02 | 0.33| -0.20 | -0.13 1

LCB 0.33| 0.51| -0.48 | 0.06 | -0.42 | -0.53 | -0.26 | -0.56 | -0.64 | 0.11 1

LCB/LCF | -0.47 | -0.30 | 0.78 | -0.18 | 0.68| 0.55| 0.62| 0.50 | 0.29 1

B/L, |-0.45|-0.67| 0.60| 0.09| 0.66| 0.86| 0.46| 0.64 1

T/, |-0.87|-0.80| 0.80|-0.55| 0.88| 0.63| 0.93 1

T/IL, |-0.89|-0.73| 0.72| -0.63| 0.83| 0.49 1

le -0.47 | -0.73| 0.71| 0.03| 0.84 1

Er -0.77 | -0.82 | 0.81| -0.41 1

a 0.77 | 0.46 | -0.18 1 Table 2. Pearson's correlation coefficients &n = 0.25
-0.58 | -0.52 1

Cu 0.77 1

BM/L 1
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Interesting are individual values of geometricalhcorrelated variables. It is possible to designekit angle at
the sternkg independently from the ratid/L;. An S-form in the keel line could produce any givealue.
Nevertheless these variables show a high crosslation ofr = 0.88. Obviously the designer strived for a keel
line with almost constant curvature that pleasad dlie causing this correlation. It is importanktow that
resistance predictions for yachts outside of the&/BS are only possible if these yachts are desigftt the
same rules.

Rawlings et al. [23] write that if the regressio used only for prediction it is not seriously afél by
collinearity as long as the prediction is restuicte the sampl&-space. If the observed correlation structure of
the sample (here the design philosophy for the) hsllhot maintained, points may be far outside shmple
space, even if well within the limits of each indedent variable. They also mention the drawback of
collinearity: It is not possible to identify the y#ically "important” variables, since the valuegtwd correlation
coefficients are distorted by measurement errdne. [&rge coefficients of opposite sign are onlycediad out in

the total sum. Miller [25] believes that the prahke with collinearity stem from the usage of the mak
equations for the computation of the least-squfitieEhis is consistent with the recommendation$odss et al.
[26] who encourage the reader to use singular vdeemposition instead of the normal equationsvimda
unstably balanced regression parameters, whictypieal for multicollinearity.

4, REGRESSION ANALYSIS

Following the statements in the last chapter we prageed with caution and use the database fograssion
analysis with the aim to develop an equation far pinediction of the residuary resistance of thd. lulfirst
decision must be made about the inclusion of thmudie number into the regression equation. Onlyva fe
researchers [27] tried to model the humps and ¥wsllof the speed-resistance curve, but with limiadcess.
The majority, including the staff at Delft, devetmp an individual regression for each of the evesggced,
discrete Froude numbers. This method will also d®uin this report.

4.1 Theoretical background

The prediction of the dimensionless resistance fametion of the independent variables can be dmghias an
approximation of the true functionality by a Taykaries expansion.

& 0Y,
Y(X) =Y(xp)+Za—F’[ﬁxj ~xp )+ Dza m (fx, —xp )X, %)+ (10)
i=1 OX; i k=10X; LOX,
Xp is the vector of alinindependent variableg evaluated at a poiftinside the sample space. When using this
equation for prediction, the poift and in consequence also the partial derivativeskapt constant. Equation
(6) can therefore be rewritten with new constaqtsndB;,

Y(X) = Ab+ZA X, +szkD( [X, + [ (11)

j.k=1

In practical applications a Taylor series is ofterminated after the second order terms. This wasds as long

as the true functionality is not- 1K with a pole close to the sample space. In thie caany higher order terms
are needed to model the true behavior of the fanclio avoid these cumbersome higher order tetrisspitter

to include 1x as an additional independent variable. First tedicated that list (9) can be improved by adding
By/Tx and replacind_,/L; with T/L,, LCF with LCB/LCF andCy with 1/Cy. It is also better to add both forms of
the dimensionless Volume, the prismatic coefficeas well as th&/V*®. The latter can be regarded as the
addition of two more reciprocal values. This britige number of the independent variables exclué&imgp to
19.

The following example serves as an explanatiorterfurther process. Let us assume that we havwefoat
variablesx;...Xs. These could be any four out of list (9). We assume that fax; andx, the quadratic as well

as the linear terms are needed for the predictibereas foxs andx, the linear terms are sufficient. In this case
equation (11) becomes:

4
Y(X)= A+ D A X B, X + By, T [k, + By, (X, + & (12)
j=1
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As this is only an approximation because we terteshahe Taylor series after the first and secortioterm
respectively, it is necessary to include an ereomtz to make the equation exact. For each fixed Frowaeber
there areN different tank tests with either different models different initial trims. So we havB points
(Xi1,%2,%3,%4,Y;) in our sample. For each of thelketank tests we can apply equation (12). In theissizdl
nomenclature with new constants and new variabissg written as

7
Yi(Xi)::BO-FZﬁjxi,j-*-gi (13)
i=1

The new variables; represent the linear, quadratic and mixed forms«pf.%,. Linear regression will
determine the coefficienf§ in such a way, that the sum of squares of ther4¢eron is minimized. The error-
term is also called residual, therefore the sunaised residual sum of squafRSS

N

RS&iaZ=Z{Y-ﬂo-i/ﬂxi,,—j (14)

i=1

In our example there are 8 regression coefficignts all the quadratic and mixed terms are includedhe
regressionM increases very quickly, as the number of variaklésincreased. The 19 independent variables
that have been defined till now would result in 2different regression coefficients Since the sample si2¢
varies between 36 and 91, only a subset of thdficmaits can be used. If the number of coefficiestsials the
number of test pointd\(= M+1), RSSwill be zero and the predictédwill be identical to the measured one.
This is not desirable, because the coefficients mist likely model to the greater part the measénet errors
instead of the physical dependency of the resistafibe choice of M is a balance between the intton of
bias, caused by the selection process, and thes€'han the prediction by using too many coefficgent
("overfitting"). The number of coefficients M+ 1, because the constant coefficiggtcalled the intercept, must
also be determined.

Some authors recommend reducing the number of thednterms first, while leaving the linear and quait
terms in the model. Fung [20] argues, that mixetdo§s-coupling") terms should only be includedsifich terms
can be proved to have real physical significand¢édw is this possible? Equation (10) is a mathemhtic
approximation of an unknown functionality with alysmmial. The true function of is by all means not a
polynomial and the single terms of the mathemata@broximation can not necessarily be identifiedhwi
hydrodynamic properties in the flow. Leaving out thixed terms;-x; is equivalent to the assumption tkaand

X, are the principal directions and the curvatureydfas a maximum or minimum along these directiorigs T
assumption is normally not justified. Huetz and fguin [4] use 13 parameters, only linear and quiadiaut no
mixed terms. A reason for this choice is not givBahoo et al. [28] insist that "when a regressiguation has
two highly correlated variables...it is wrong to iadé their product”. This is a direct quotation fréiairlie-
Clarke [29], who in turn quoted this from J.R. Sc@this quotation is correct if the two variable® dully
collinear, but why then would one include a comglietredundant variable into the regression at @t?the
other extreme Fung [20] cites in his literatureveyrregression methods that used up to 53 terroljdimg
mixed terms up to the 6th order and Lin et al. [@8 21 linear parameters and in addition 33 highger and
mixed terms. In the following analysis it will beecded for each variable that is entered into #grassion,
whether its influence should be linear or quadrdticthe quadratic case the linear and the quadtatms are
entered plus all mixed terms that contain the naviable and the quadratic variables already inr¢igeession,
just as in the example equation (12).

The task is now to select a prediction model witlya few of the 210 possible coefficients. In thethere are
2219 = 1,610 different possible models! We therefore need @gss for the selection of a good, hopefully the
"best" (whatever that means) subset of variablegiallle selection in regression has received amnsmgs
attention in the literature in the last 20 yeaise Btate of the art in 2002 is described in [25].

4.2 Variable selection

One possibility is to select the variables manubihexperience, intuition or trial and error. Asfiguidance for
the significance of the predictor-variable is iisedt correlation with the dependent variable. Toerelation
coefficients for some of the variables, linear asllvas quadratic terms, are depicted in figure 3stéking
feature is the sign-change of the correlation ¢oiefits betweerrn = 0.35 and 0.45. An increase of €ldL,

will decrease the resistance at low Froude numbérsreas it will increase the resistance at higipeeds. The
wave system created by the hull could give an ewgtlian for this effect. AFn = 0.4 the length of the wave
created by the bow equadlg,, the second wave crest is therefore at the ségrspeeds belown = 0.4 the stern

is supported by the second crest of the bow wabereas aboven = 0.4 the crest is behind the ship, the stern
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falls into the trough, the bow goes up and the &higriven "uphill”. It seems to be logic that paueters that
influence the trim have an opposite effect in th® £n-regimes. This occurrence of speed regimes where
parameter influences change might indicate thessityeto use different variables for modeling diéfet speeds.

1.00
0.80 - ——cPl
—e—CP2
060 f-----------mm e J| —=—T/L2
<
2 0.40 - ——B/L1
£ —»—ER
S 0.20 =/
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E 0.00 ——1/CX
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8 o~ (LCB/LCF)"2
2 .0.60 —o— (T/L2)%2
——|E”2
0.80 T TSmET oo E T
'1.00 T T T T T T T 1
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Froude number

Figure 3. Correlation of the individual X; to theY;

In a first test only 17 linear variables withdeé andB/T were included in the regression analysis. Thislman
regarded as the starting point of the variablectiele process. The quality of fit is measured by #tandard
deviation of the residual sum of squares. The dafimis:

RSS 1 N,
g = = E 15
\/N—M—l N—M—li ' 13)

i=1

The denominator under the root sign representsléigeees of freedom of the error vector. R&Sin itself is
not a good measure of fit, because it decreaséseaith added variable till it reaches zero. RI$Sof a subset
will always be higher than theSSof the complete set. The standard deviation ieteeb measure, because it
will increase, if an additional variable only adusise and no useful information. The target isdfae to find a
subset with a low standard deviation.

Fn 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80

M+1 N 42 58 75 90 91 91 91 91 90 88 79 57 49 38 36

|(|)rr1]<|eyar terms 18 |o[%]| 593 | 288 | 214 | 153 | 125| 96| 67| 50| 41| 38| 48| 47| 43| 39| 48
manual 28 |o[%]| 621 311|227 151 | 109| 88| 55| 46| 40| 35| 43| 41| 27| 35| 44
selection

Lasso 25 |o[%]| 303 266 | 175| 120 | 11.3| 88| 58| 41| 43| 46| 44| 23| 23| 23| 24
individual for-

! 21-28 | 6 [%] | 41.4 | 23.2 | 17.3 | 13.0 9.5 7.6 4.2 3.8 35 3.4 3.9 3.6 2.8 2.4 3.7
ward selection

individual full | 55| 5 106] | 200 | 106 | 162 | 116 | 83| 69| 38| 27| 20| 28| 33 26| 18 18| 16
search
bellll)cskesarch N1 25 | o) | 429 | 214 | 170 | 132 | 103 | 84| 39| 34| 30| 32| 34| 31| 19| 19| 39

Table 3. Standard deviationo of the residual sum of squares in % of the mean
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The results for the regression with 17 linear Jalga are listed in table 3 for each Froude numbemake the
values comparable; was standardized for each Froude number sepanattlythe mean value of thé. In a
next step the quadratic and mixed terms for 4 bbegawere added. The selection of the quadratiavias was
guided by the correlation results in figure 3. Thsult is listed in table 3 in the line "manualestion”. It can be
seen that belown = 0.25 there are too many termashas increased compared to the linear case.

Searching the literature of the last decade oralibeiselection, there is one algorithm that stamds Many
authors recommend as best practice the use of I(essst absolute shrinkage and selection oper§2ét) In
Lasso equation (14) is minimized for the standadiizariables subject to the constraint

g\ﬁ;\ <s (16)

wheres is a threshold that is gradually reduced. In esielp s is adjusted in such a way, that one of the
remaining constant§ is reduced to zero and removed from the list. fEselts are often better than the manual
selection, see table 3, but there is one big dmatdge: in a large number of cases there were miagdbles
selected, without selecting the involved lineagoadratic terms which is not consistent with treureements of
equation (10).

It would be good to have a selection process thaiva at each step to control the way how the \deis are
included, be it linear or quadratic, including mixeerms. A method that allows this is the forwaetkstion.
This method has a bad reputation [25], which migthim from the fact that the minimum of tR&Sis only
considered for the next step. This is comparabla thess player who makes his decisions only Igpkime
move ahead. In reality a good player anticipatesrtext possible three or four moves and is guidetis
decision by the analysis of all possibilities. Athredl was therefore programmed, that extends forsaletction

to the analysis of all the next possible four sibes. For the initial set of 12 variables one tieschoice at each
step between 12 linear variables and 12 sets afrgtia and mixed terms. For each of these 24 chdlere are
again 24 possible choices in the next step andns@lbtogether 3.30° possibilities. Out of all these possi-
bilities that path is identified that gives in thad the smallest standard deviation. This pathistnsf four
variables, either in the linear or quadratic fo@ut of these four variables the one is selectet dhaws the
largest reduction of in the first step. After this selection, the whelecess is repeated, always looking four
steps ahead. The results of this stepwise regreasedepicted in figure 4. A different behavioagain visible
between the speeds belém = 0.4 and above. The first coefficient on the &sscrepreseni8, which is just
the mean of all experimental valu¥sat that specific Froude number. If we lookFat = 0.15, the standard
deviation of the distribution of th¥ around this mean is 79%. By introducing the depand on the hull
parameters it is possible to reducelown to 23%. The optimum (= minimum) is reached/atl = 23. If we
look atFn = 0.4, the picture is quite different. The stamddeviation of the mean is only 14% and can be
reduced by the inclusion of the hull parametersmémw4.8% forM = 20. So one can notice thatFat = 0.4 the
resistance is almost fixed and nearly independktiteohull parameters. At higher speeds thdupicis again

1.00 0.35

sigma residuum

no. of coefficients no. of coefficients

Figure 4. Standard deviatione as a function of the number of coefficients (M+1)
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similar to the low ones, e.g. Bh = 0.5 the mean is 29% and it can be reduced & &M = 21. The results of
the stepwise forward regression are also includeddmparison in table 3. This method yields slighietter
results than the Lasso but, more important, avtiidsdrawback of the inclusion of mixed terms withthe
corresponding linear and quadratic terms.

A problem that has not yet been discussed is thppsig criterion. In a search of the naval literaton
regression analysis it was found that authors[2@], [30] and [31] had only intuitive and arbityatriteria. The
decision on how many variables to include and wtwestop is the balance between under- and overfitti
Burnham and Anderson [32] explain that an undeditinodel is too simple, has large bias and failsleatify
effects that are supported by the data. An ovedithodel includes spurious variables and errorstaluendom
fluctuations (measurement errors). According tontheinderfitted models present a more serious i$sue
variable selection than overfitted models. In thevpus paragraphs the changeciwas used as a stopping
criterion, but it gives no sharp cut-off and thenmium occurs sometimes at astonishing high valdidd.cA
stopping criterion that is especially suited toesasvhereM is not small compared tN is the second order
variant of Akaike's information criterion [32]:

AICC:NIZIh( DZgj+2K+2K[GK+1) with  K=M+2 (17)

Miller [25] reports a form wher& = M+1, but the differences are small. The relath\€: values for the points
of figure 4 are shown in figure 5. The optinhlis the minimum ofAIC.. With the exception of the special case
Fn = 0.4, the optimal number of coefficients is alwdgss or equal 25. A closer look at the selectathbles
shows that the optimum contains always 5 quadfatios including the 5 linear variables and addiilbnone

to four other linear variables.

0

-50 1

-100 1
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-150 1

-200 1

B —————————————

——0.1 —#-0.15-2-02 —%0.25
—>*—0.3 —*—035-—+04

-300 T T T T
0 5 10 15 20
no. of coefficients no. of coefficients

Figure 5. AlC¢ as a function of the number of coefficients (#+1)

All books on statistics agree that the only surg whfinding the best fitting subset is the exhawestsearch.
With the knowledge from the forward selection psscas described in the last paragraph it is nowilplesto
limit the complete search to a manageable sizeielthose out of 18 variables 5 variables with gatdrand
mixed terms and 4 variables with linear terms otilg, number of coefficients is limited to 25. Insthase there
are 6.1310° models per Froude number. A complete inspectioallahese models for all Froude numbers can
be performed within a few days on a modern PC.mythis analysis some peculiarities could be olegkrv

o The choice of additional variables depends on tivalrer of coefficients. Let us assume that besige®
Xis, X5 is a variable with a good correlation, but the bamation ofX;g andX;; models the influence even
better, thenX;; to X5 will be chosen if the number of coefficients istreeted to 5. If 6 coefficients are
allowed X5 will be dropped and;s and X;; will be chosen instead. It is therefore almost asgible to
recognize a pattern in the choosing process.

o Sometimes it was possible to get the same stardiandtions with different sets of variables. This is a
sign that there are redundant variables in the Tiste full search with a tightly limited number of
coefficients avoids the inclusion of redundant ailés.
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o Often a good correlation could only be achievedgart of the experiments. One set of variables gave
good correlation for the old models of series 1,did not predict well the newer models and a déffe: set
of variables predicted the new models well, butthetold ones. This was taken as an indicationrtiaat
than 25 coefficients are needed in a set.

o When more than 25 coefficients were used the ptiedievas not as robust as needed. This becamdevisib
when the height of the towing point was varied.sd®n as the limits of the DSYHS sample space were
surpassed the predicted curve of resistance vademumber exhibited strong oscillations.

o TheAIC. values were a good guidance to distinguish betveeempeting models with a different number
of coefficients when the difference in the standdediationc was small.

These problems with conflicting demands are novadme. The compromise that was chosen first, allbwe
different variable selections for different Froudembers. The results of the full search can bedanrable 3 in
the line "individual full search". They are the besthe whole table. This selection together vi#tsso and the
individual forward selection have a big disadvaetag common; they use different sets of variabtesefach
Froude number. From a hydrodynamic point of views ik questionable. The selection will most likddg
driven by measurement errors. The resulting caroglaequation predicts the measured values very; et it
fails, when the height of the towing point is varier when it is applied to new models, not in th8MBIS. In
such cases the predicted curve of resistance adEmumber is wavy and not smooth.

In the next step the full search was therefore mauogned to find the optimum set for a range of consee
Froude numbers. The full range from 0.1 to 0.8 dia&led into 3 blocks, guided by figure 3. For edtbck a
separate set of variables was determined. Thetirgggtandard deviations are listed in the last afwable 3.
The AIC: values of the selected regressions are enteregingle large symbols at no. 25 into figure 5 for
comparison. The results are not as good as inabe af the individual search, but the robustnessenfesulting
correlation was considered to be more importané Jibsets that were finally chosen are compiléderupper
half of table 4.

fore body after body entire hull max. area section

Fn | Cpy [LuV.™3| TILL |B/Ly| e | Cu | Cro |La/V2™®| T/, | Er | LCB |LCBILCF|BM/L| Cwp |1/Cx | BIT | a | y

0.1-
e X X rprf X X | X |

0.4 -

0.55
o5 I | X X X Il X | X ]

outside DSYHS:

0.1-
oas | | Lpr| L] L] !

0.4 -

0.55
Ol ! | | R

| = linear term only X = linear, quadratic and mixed terms

Table 4. Finally selected variables

The choice of the Froude number ranges is arbitaag influences the results of the full search.akeady
indicated, the collinearity of the variables does allow the identification of the physically "rifhparameters,
they are disguised in the "noise" created by thasmement errors. Many more models, a much laayapke
size and most likely smaller measurement errorsladvbe needed to identify the variables that red#yermine
the wave resistance. The current selection doesendier the prediction invalid, one just has toeptcthat the
uncertainty of the measurements is not averagedatts contained in the predicted resistance.

4.3 False friends

At first sight the Reynolds number is closely ctated with the resistance. Computing the probahiiftthe null
hypothesis by a comparison with Studettfstribution gives a zero probability for the cakat no correlation
exists betweetRe andY. Numerical values are listed in table 5. In addittable 1 shows th&eis the only
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variable that is not strongly correlated with otkariables. S&Reseems to be an ideal predictor variable. On top
it is not difficult to find physical arguments thascosity should have some influence on the redidesistance.
For all these good reasoRgwas included in the regression analysis and treatiterm was kept in the final set
of predictor variables. When comparing the prediatesistance with the measured values of the DSYhES,
agreement was very good. The surprise came, witemparison was made with tank test data for a motdgl
meter length. The maximum length of the DSYHS medel2 meter, so there is a substantial extrapolati
necessary for this prediction. The results werartailis, extrapolation was not possible. An inspectf the raw
data was the only way how to find the root caus¢his false regression model. Figure 6 shows erpattal
data forFn = 0.25.

0.16

N A Figure 6. Correlation between
’ °« ° dependent variableY and
P * ] standardized Reynolds
o number at Fn = 0.25
0A0f —m S
L]
> 008 -—————-———— - e~~~ P

0.06

0.04 4

0.02 4

0.00

T T T T T
0.7 0.8 0.9 1.0 11 1.2 1.3
Re / Mean(Re)

This Froude number is picked, because the residttypical. Several different model families wesed in the
DSYHS with three different model lengths. The ldngias kept constant within the family; therefore points
are clustered around 3 Reynolds numbers. The fanmiily the short model was the old design with ahéged
forebody, whereas the longer models had a modaghgilike hull. So it is clear that the model lemgtas not
chosen randomly. The variation of the Reynolds nemtas not extended across all the different lmuthg and
can therefore not be used for the regression. ésnaequence the whole analysis as described ipréwous
chapters had to be repeated, this time witRein the subsets. The standard deviatienvgere equally as good
as before. To make sure that the drofReffrom the variable list was right, a regressionhvihie final sets of
table 4 was performed. The predictions were caledland then the residualsas defined in equation (9), were
correlated again®®e Results are in table 5.

Fn 010 | 015 | 0.20 | 025 | 03 | 035 | 0.40 | 0.45 | 050 | 055 | 0.6 | 0.65 | 0.70 | 0.75 | 0.80
Correlation| & 0.311 0.149| 0.076 | 0.125 | 0.097 | 0.028 | 0.358 | 0.545| 0.614 | 0.638 | 0.617 | 0.587 | 0.586 | 0.604 | 0.618
with Y Probabil. 0 0| 0.02 0 o| 012 0 0 0 0 0 0 0 0 0
Correlation| R° 0| 0.003| 0.001 0| 0.003| 0.006 | 0.002 | 0.004| 0.001| 0.002| 0.003 | 0.001 0 0 0
with & Probabil. | 0.97| 070| 085| 099| 059| 045| 070| 056| 0.78| 068| 062| 080| 090| 096 0.98

Table 5. Correlation of Re against the measurements and against the residuals

The coefficients of determination are all close¢oo. The values of the probability are again far hypothesis
that there is no correlation. It shows that witpbrabability between 45% and 98% a random selecationld
yield the same correlation. So in this case itrsvpn, that the residual errors do not correlatd Rieand it is
absolutely right to leavdRe out. This is a classical example of selection bdasing the design of the
experiments.

5. PREDICTED VS. EXPERIMENTAL RESISTANCE

5.1 At model size

At the end of his publications Prof. Keuning usyaibmpares measured and predicted resistance curgbse
an impression of the quality-of-fit. The chosenrapées are always the parent models of the DSYH8&owit
additional trimming moment [1]. If the same compari is made for the new regression with the vaz@loff
table 4, the difference between Keuning's predictesults und the new formula is only small andatiditional
effort of the new method would not be justified.eTpicture changes, when the complete databasé b16éb
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Yot Delft regression

test points is inspected. Figure 7 compares thdigiezl and experimental values of the total restdor the
new regression and for the Delft-method with thditmh of the influence of the trimming moment asdribed
in [1] and [21]. The Delft-method uses all in afl fegression coefficients. The definition\af; in the diagrams
is similar to equation &, is either the measured total resistance or theafunscous and residual resistance:

V= —— 2 (18)
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Figure 7. Total resistance coefficients for all expements 0.1 <Fn < 0.77

In the ideal case all points would be lying on thegonal line. A high value of the kurtosis is aasl sign that
the distribution is peaked and not normal (Gau$sikmitially the kurtosis of the new regression vasiost as
high as for the Delft-method. In such a case tleeemany predictions very close to the experimerdhle but
also many points in the wide tails of the distribatwhere the prediction is far off. This led teetbonclusion
that there must be additional effects that areamvered within the initial set of variables. Theogess was
therefore restarted in chapter 3.1 with the deéinibf new additional variables. The right diagramfigure 7 is
the result for the final variable selection of &#lwith significantly reduced standard error also &urtosis.

The red dashed lines in figure 7 indicate theltZands. In case of a normal distribution of th@ksrthe + &

band would contain 95% of all test points. Becanfsthe high kurtosis the distribution is not normélith a
sample size of 1166 it is possible to determinech@ntiles empirically by counting. Astonishinghetresults
(95%) are in both cases identical to the valueth@formal distribution. The statistic evaluatidows that the
standard deviation and also the error band areceztlby a factor of 3 in the new formula, comparedhie
Delft-method. Helpful is also a look at the relatierror of the predicted total resistance in fegg@ The
prediction error is calculated from

Yerror = Yiotpredicted- Yy measured

It is reduced with the new method from 16% to 5%e Telative error is obviously larger at the lowd dor
smallFn. This trend is more pronounced in the Delft regi@s than in the new one. The reduction of thersrro
is significant but it must be pointed out, thatshesrrors are only valid for models of the DSYHS8t models
outside of this database the error will be largmrause of the selection bias in the regressiorysisal

The kurtosis of the final selection is still highdathe distribution is not normal. It is therefaméeresting to have
a look at the statistical distribution of the piaitin errors for the new regression.
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Figure 8. Total relative resistance error for all exeriments 0.1 <Fn< 0.77

The deviation from the normal distribution with @gk at the mean and missing values at medium distanthe
mean is clearly visible in figure 9. Another waylook at this picture is the assumption of a nordiatribution
caused by the measurement errors and on top apsgien of a random error caused by an unknown
parameter. Figure 10 depicts this hypothesis byimasg) a smaller standard deviation for the normal

distribution.
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Figure 9. Distribution of the
prediction error and comparison
with normal distribution of equal
standard deviation

Figure 10. Distribution of the
prediction error and comparison
with a normal distribution of
reduced standard deviation

The unknown parameter that causes additional ralyddistributed small and large errors is not neaghsa
hull parameter. It could also be the influence lué towing tank set up. The roughness strips areggth

© Ulrich Remmlinger, page 16



between the test runs, this could have an influeNoemally the measured resistance is time depdratahan
averaging process is employed, which is unknowrth@Vit a detailed knowledge of the experimental gssc
and ideally the inspection of the raw data, a frthnalysis is not possible and the current errastnbe
accepted.

5.2 Extrapolation to full size

It was already mentioned that the viscous resistaamed the wave resistance are scaled differentlgnwh
extrapolating to full size. A sensitive examplehs model Sysser 26, because the viscous resistaeoeding
to the Delft-method differs quite a bit from theué# of the boundary layer calculation. The comg@amiat model
size is depicted in figure 10 on the left side. Tnag coefficient has the same definition as inrkgl. There is
an agreement between predicted and measured nesistat full size the total drag calculated witte thelft-
method is about 18% lower than the new predicti@sed on the b.l.- calculation, depicted on thbtrigide of
figure 10. The different total drag coefficientfatl size leads with a scaled towing height alscatdifferent
trimming moment which in turn results in a new desiry drag coefficient. This change in trim when
extrapolating to full size is not considered in Beft-method. If the new prediction is valid is apen question,
as long as there are no towing results at full aizalable. Right now it is a better founded gubss the Delft-
prediction.
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Figure 10. Drag coefficients for model and full sia

6. HULLFORMS OUTSIDE OF THE DSYHS SAMPLE SPACE

At the end of chapter 3.3 it was explained thatptedicted resistance can be far off, if the hallgmeters and
the design philosophy are not covered by the rasfgihe tested models in the DSYHS. In such a case a
extrapolation of the regression is required. Kegnamd Katgert [1] deleted all higher order termsthmir
regression because, as they stated, these ternkeneghthe robustness and stability if the predictias to be
made outside of the parameter range. Followingatiisce an additional regression analysis was pedd, this
time limiting the parameters to the linear term$yofo broaden the covered parameter range thrdiiauhl
models were added to the database. Available aeletest data of a Dehler 33 [33], a Delft-372 [84§ of the
Inui S-201 [35]. The number of variables was chosath the help of theAlC.. The selected variables are
indicated in the lower half of table 4. The resydtstandard deviations are listed in table 6.

Fn 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 | 0.55 | 0.60 | 0.65 | 0.70 | 0.75 | 0.80

M+1 N 44 61 78 93 94 94 94 93 92 90 81 59 51 40 38

linear full

11-12 | 6 [%] | 66.0 | 31.2 | 25.7 | 18.6 | 134 | 109 | 67 | 50 | 46 | 46 | 50 | 49 | 41 | 30 | 41
search, blocks

Table 6. Standard deviationo of the residual sum of squares in % of the mean
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These deviations are roughly 50% higher than theegafor the regression that includes the quadaatit mixed
terms. It is advisable to use both predictionsdarapiel and check them for plausibility if a hubirfn does not fall
clearly into the range of the DSYHS models.

7. CONCLUSION

The new regression model improves the predictiath®bare hull resistance compared to the Delftantfor
models within the DSYHS. Future comparisons will i€the improvements will consistently appeas@lwith
different and new designs. To enable this necegsadrback, a new prediction-software will be depeld and
will soon be available online.
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