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Abstract. A regression analysis yields a new formula for the prediction of the resistance of the models of the DSYHS that 
seems to be superior to the original Delft-method. Future comparisons with more test results have to tell if the new formula is 
also better when applied to other hulls, not considered in the regression. 
 
NOMENCLATURE 
 
Awet Wetted area of canoe body 
AW Water plane area 
AX Area of max. section = maximum 
 immersed area of all cross sections 
BM Longitudinal metacentric height 
BWL Maximum beam in the water plane 
BX Beam in the water plane at max. section 
CP Prismatic coefficient 
CWP Waterplane area coefficient 
CX Maximum section coefficient 
D equivalent diameter for body of revolution 
ER Exit angle of the rocker at aft end LWL 
Fn Froude number U∞ / (g·LWL)

1/2 

FP Forward perpendicular = forward end LWL 
g gravitational acceleration = 9.81 m/s2 

G wetted girth-length of the cross section 
IE Incidence angle at entrance (FP) 
L1 Distance from FP to max. section 
L2 Distance from max. section to aft end LWL  
Lcb Distance from FP to centre of buoyancy 
Lcf Distance from FP to centre of flotation 

LWL Length of the actual water line at rest with 
 trimming moment applied 
LWL0 Length of the designed water line 
r Pearson's correlation coefficient 
R Resistance force 
R

2 Coefficient of determination = r2 
Re Reynolds number U∞·LWL / ν 
Tu Turbulence level 
TWL Maximum draft of canoe body 
TX Draft of canoe body at max. section 
U Water speed at edge of boundary layer 
U∞ Ship speed 
u',v',w' Fluctuating velocities 
VCB Displaced volume of canoe body 
V1 Part of VCB forward of max. section 
V2 Part of VCB aft of max. section 
α Flare angle at max. section at LWL 
γ Deadrise angle at max. section at keel 
ρ Density of the water 
ν Kinematic viscosity of the water

1. INTRODUCTION 

Most velocity prediction programs (VPP) rely on the regression formulas of the Delft Systematic Yacht Hull 
Series (DSYHS) [1] for the estimation of the bare hull resistance. The basic method of the analysis of the towing 
tank data was already established in 1973 by Professor Gerritsma. An estimate of the viscous resistance was 
subtracted from the measured total resistance of the model. The remaining difference, the residuary resistance, 
was correlated to the geometric properties of the hull. Since computer power has dramatically increased in the 
last 40 years, there are more sophisticated ways today to predict the viscous resistance than the simple methods 
of 1973. The aim of this paper is a critical review of the Delft-method and an investigation of other correlation 
methods for the hull resistance, including the results of the newest research in statistics, with a hopefully better 
goodness-of-fit to the data. This new approach is only possible because the researchers at Delft University of 
Technology decided in a really generous act to make the entire experimental data sets of all tested hulls available 
to the public. Since the beginning of 2013 the data is online [2]. 
 
There are more test results of systematic yacht hull series available in the literature, but none of them is as 
complete as the experimental data from Delft. Battistin et al. [3] published the results of systematic tests of 
IACC-yachts at INSEAN. All the relevant data is supplied but with the exception of the varying trimming 
moment that was applied during each run. With this vital information missing, these experiments can 
unfortunately not be used for a regression analysis. 
 
Interesting work is reported by Huetz and Guillerm [4], who created the database for the regression not from 
towing tank experiments but by CFD. They used the RANSE free-surface solver ICARE and claim to get a more 
reliable database with CFD because they avoid the measurement errors of the towing tank. The drawback is the 
high computing effort that only allowed the simulation at three Froude numbers, namely 0.35, 0.5 and 0.65. 
Huetz and Guillerm checked the validity of the results with three models out of the DSYHS; a diagram is shown 
for Sysser 25. In this diagram the total drag values from CFD and towing tank agree within 5% with the 
exception of Fn = 0.35, where the CFD-prediction is 20% too high. Their published coefficients were used by 
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this author to predict the residuary resistance for Sysser 71, 72 and 73, because these hull forms are close to the 
ones used in [4]. Surprisingly the errors were larger than 50%. A similar experience was made by van Mierlo [5] 
who compared the residuary resistance of 38 models of the DSYHS with CFD-results computed with 
SHIPFLOW. Even though he worked together with the developers of the code at Gothenburg, he was not able to 
explain the large discrepancies between measurements and predictions. At Fn = 0.35 e.g. he found a deviation of 
± 50%. At Delft a repeatability of 2% is claimed for the test results [6]. At this time it is not clear whether CFD-
results are accurate enough to form a database for a regression analysis. 

2. RESISTANCE COMPONENTS OF THE HULL 

In his first step Gerritsma followed Froude's method. Froude's work, published in 1868, marked the beginning of 
scientific ship model testing. The towing tank became the most efficient design tool in ship optimization. Details 
can be found in any text book on naval architecture e.g. [7]. The basic idea is to split the measured total 
resistance of the model into a viscous part, which scales with the Reynolds number, and into a wave making part, 
which scales with the Froude number. The extrapolated values at full scale are then added to give the total 
resistance of the full size ship. The determination of the viscous resistance was the subject of intense debates 
over decades during the meetings of the International Towing Tank Conference. It is not possible to calculate or 
measure the true viscous resistance of the model, including the effects of sinkage and trim and of the varying 
wave height along the ship; instead the value is determined for the still water level. The remaining resistance 
component, after the subtraction of the viscous estimate, contained therefore not only the wave making 
resistance but also some small viscous "left overs". This remainder was therefore not called wave resistance but 
more appropriately residuary resistance. Because of the small viscous effects that are contained in the residuary 
resistance, Froude scaling to full size is never 100% correct. 
 
The Delft-method is based on the ITTC procedure of 1957. The viscous drag according to the ITTC is computed 
from: 

( ) wetITTCvisc AkCUR ⋅+⋅⋅⋅⋅= ∞ 12
2
1 ρ                                                          (1) 

CITTC is the friction coefficient of the ITTC-57 correlation line and k is the form factor determined experimen-
tally by Prohaskas's method. It is questionable if the ITTC-57 correlation line will give good results for yacht 
like bodies. It is based on the skin friction of flat plates and was developed for merchant marine vessels with 
long parallel sides that do not exist in yachts. The Delft-method tries to compensate for that by using only 70% 
of LWL0 in the determination of the Reynolds number. The modified friction coefficient used in the Delft-formula 
that replaces CITTC reads: 
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The Delft-method does not use a form factor. The viscous form drag is therefore part of the residuary resistance. 
This does not pose a problem for the correlation of the data at model size, but it will introduce an error when 
extrapolating to full size, since viscous drag and residuary drag are scaled differently. 
 

With today's computing power there is no need any more to rely on the ITTC-57 correlation line. Even in fast 
VPPs it is possible to include a simple boundary layer calculation that determines the viscous resistance with a 
higher accuracy than the correlation-line-methods. A three-dimensional integral boundary layer calculation 
method for bodies of revolution is described in [8]. To make use of this fast method, the hull is approximated by 
half a body of revolution. The equivalent diameter for the body of revolution can be determined in many differ-
ent ways. A comparison with all the models of the Delft-series gave the best results for a combination that is 
formally identical to the definition of the hydraulic diameter in pipe flow. For each cross section the equivalent 
diameter is calculated from: 
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D
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The velocity at the edge of the boundary layer is taken from the potential flow solution [9]. The differential 
equations for the boundary layer are then solved by the scheme of Stoer and Bulirsch. The solution of v. 
Kármán's momentum equation yields the local skin friction coefficient cf (the dimensionless form of the shear 
stress) and the b.l.-momentum thickness as a function of the position along the hull. Figure 1 compares the 
calculated local skin friction coefficient along the hull with that of flat plates of equivalent length and different 
positions of the trip. There are two active boundary layer trips on the model, one 0.02m and the other one  0.35m   
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Figure 1.  Local skin friction coefficient at 1.77 m/s ship speed 

behind the bow. The second trip is not active on the flat plate, because at the plate without flow acceleration 
natural transition occurs at 0.2m. It is obvious that the local skin friction on a flat plate is significantly different 
from the development of cf along a ship's hull. In the ITTC procedure the burden to correct this flat plate drag in 
such a way that the result agrees with the hull drag is put entirely on the form factor k. It is not surprising, that no 
simple method exists to predict the value of this form factor. The problem increases if b.l.-trips are used. The 
experiment gives no indication, which one of the trips is causing the transition. At Delft they assumed turbulent 
flow, starting right at the bow. 
 
The implemented integral computing method performs an integration of the local shear forces from bow to stern 
which yields the total skin friction drag according to: 
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As this is only the skin friction drag, the addition of the pressure drag is needed to give the total viscous drag. 
When an integral b.l.-calculation is employed the total drag is usually calculated directly from the momentum 
deficit thickness at the tail of the body, using either Squire-Young's or Granvilles's [10] formula, which make use 
of v. Kármán's momentum equation. In our case with a very thick b.l. at the stern, that is often separated, the 
application of this formula results in unrealistic values for the total drag. v. Kármán's momentum equation is 
only applicable if the pressure at right angles to the wall is constant within the b.l. This is a realistic assumption 
for a thin b.l., but in the very thick b.l. at the stern with strongly curved streamlines this assumption is violated. 
Patel and Guven proved this experimentally [11]. In our case it is therefore preferable to rely on the very robust 
integration of equation 4 and add to this an estimate for the pressure drag. Hoerner [12] proposes for streamlined 
bodies of revolution a form factor that consists of two terms. He explains that his first term takes care of the drag 
increase due to the supervelocity along the curved streamlines and the second term simulates the pressure drag 
due to the thickness of the boundary layer at the tail that reduces the curvature of the streamlines and therefore 
the pressure recovery. This second term is a good estimate for the required pressure drag, in case the flow is 
attached. The viscous drag is therefore calculated from: 
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Should the b.l.-calculation detect flow separation, Hoerner's formula for the base drag is used instead to calculate 
the pressure drag. This method was successfully validated against test data from the wind tunnel and also with 
CFD-results of a RANS-solver.  
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Figure 2.  Calculated and measured drag coefficients for Sysser 23 

The comparison of the Delft-method and the b.l. calculation is depicted in figure 2. Sysser 23 is a good example 
that shows the influence of the sand strips and how the Delft-method (equation 2) overpredicts the viscous drag 
at low speeds. The drag coefficient is here defined as: 
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The viscous resistance calculated by the Delft-method is definitely too high at Fn = 0.1; it is even higher than the 
measured total resistance, which is the sum of viscous and wave drag. The reason for the inadequacy of the 
turbulent friction coefficient is the large extent of laminar flow at low speeds with these small models. At Delft, 
they tried to eliminate the laminar flow by using b.l.-trips in the form of carborundum sand strips, applied 
vertically to the hull surface at three fixed distances from the bow. Each of the three strips was 20 mm wide and 
the distance between the strips was 240 mm on the small models and 330 mm on the large ones [13]. Whether 
one of these three strips is capable to trip the flow from laminar to turbulent depends on the Reynolds number, 
based on the momentum thickness of the b.l. A prediction model for this type of flow is described in [14]. The 
viscous resistance curve from the integral b.l. calculation shows, that the transition point is jumping from the 3rd 
roughness strip to the 2nd at a Froude number above 0.1. A second jump occurs between 0.2 and 0.25, when the 
transition point moves from the 2nd to the 1st strip at the bow. These sudden increases in the viscous resistance 
are also visible in the total measured resistance, whereas the curvature of the residuary resistance is smooth. The 
residuary resistance as a function of the Froude number for all the models from no. 1 to no. 73 was determined 
with this method. 
 
An input parameter to the b.l. calculation is the turbulence level in the flow around the hull. It is defined as:  
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The fluctuating velocities are created by two different mechanisms. One is the breaking of the bow wave. The 
vorticity in the surface layer of the bow wave can increase Tu up to a value of several percent [15], but it is 
dissipated quickly and does not reach the lower parts of the hull. To account for the bow wave effect, a minimum 
value of Tu = 0.3% is prescribed in the calculation. The other root cause of the fluctuating velocities are eddies 
in the wake of the towed model that persist in the tank a long time after the run. These eddies finally dissipate, 
but the waiting time between the runs determines obviously the turbulence level in the tank. If the rotating 
speeds of the eddies are regarded as constant during the run, then Tu will decrease as the towing speed U∞ 
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increases. The importance of Tu is well known to practitioners for a long time. In his comment at the 6th ITTC 
in 1951 Mr. Ferguson from Clydebank explained [16]: 

We tried that {i.e. a trip wire}, and certainly got an increase in measured resistance, but the values were not steady. We 
studied these tests and varied the intervals of time between successive test runs. There was much greater difference 
between the curves so obtained than between the curves for the naked model and for the model with trip wire. To us it 
appeared that the quality of the degree of internal turbulence in water was as important as the type of turbulence 
stimulator applied to the model. The "Monday morning feeling" has been quoted at times. By that I mean the interval 
over the weekend when the water has been allowed to lie quietly. This affects the first runs you do on Monday morning. 
We always ignore the first three or four runs we do on Monday morning, until the water gets into what I call a uniform 
state of consistent turbulence, and after that the results will be comparable. Even during the lunch period and the first run 
after lunch you do get a difference if you repeat a spot at the same speed. 

At Delft they used a waiting time between runs of 15 minutes, which seems to be industry standard. What is 
unusual is the statement that they never repeated a run during a test campaign [6]. Without these checks it is very 
difficult to catch outliers. Several outliers at low speeds could be explained and corrected by a variation of Tu in 
the b.l. calculation. In general the value Tu = 1/U∞ (speed in m/s yields Tu in %) is a good starting point for the 
calculation. This value was used e.g. for the calculation that produced figure 2. 

3. GENERATING THE DATABASE 

In the next step the relevant geometric dimensions of the hull and all other properties that might influence the 
residuary resistance must be identified and listed. This is the most crucial part of the whole process. If an 
important parameter is left out in this step, the correlation can never be successful. To be on the safe side it is 
best to include too many parameters at this step and sort out the irrelevant ones later, based on the correlation 
results. 

3.1 Selection of the parameters 

The Delft-method [1] uses the following physical quantities: Rres, U∞, VCB, ρ, g, LWL0, BWL, TCB, Lcb, Lcf, AX, AW. 
A factor analysis [17] of these independent variables revealed that 75% of the variance in the variables across all 
models could be explained by only two factors. This indicates that the so called independent variables, that are 
used to predict the resistance force (the dependant variable), are statistically not independent. There is a high 
risk, that the chosen variables are not sufficient for the prediction of the resistance. The chosen variables have in 
common that they describe the hull form in a more global way, e.g. over all length of the water line and total 
volume of the canoe body, whereas the wave making is more linked to the detailed local properties of the hull. 
Manen & Oossanen [7] show four different wave systems that are generated by the local curvature of the hull at 
different stations. Andersson [18] and Lin et al. [19] subdivided the hull in a forward and rear part and calculated 
the geometric quantities separately for each part of the hull. Andersson also added several angles, measured in 
the plane of the cross sections and also in the water plane. Fung [20] used similar local variables although not as 
many and not as detailed as Andersson. The influence of an additional trimming moment was modeled at Delft 
[21] as a function of the height of the longitudinal metacentre. The correct quantity would have been the height 
of the metacentre above the centre of gravity. Unfortunately the location of the centre of gravity is not known for 
the models. The height above the centre of buoyancy BM is used as a substitute. Initially only the first 18 
quantities in the following list were used, but for reasons that are explained in chapter 5.1 the number of 
parameters was not sufficient. Further parameters that might have an influence on the resistance were included. 
After several trial loops the list of relevant quantities is now as follows: 
 

Rres, U∞, VCB, ρ, ν, g, LWL, BX, TX, Lcb, Lcf, AX, AW, V1, L1, IE, ER, BM, UFP, α, γ 
 
The maxim values BWL and TCB used in [1] are replaced by the values at the maximum area section BX and TX to 
produce consistent dimensionless variables in the next step. The incidence angle at the entrance IE is the angle 
between the waterline and the symmetry plane, measured in the water plane at FP. Similarly the exit rocker angle 
ER is the angle between the keel line and the water plane, measured in the symmetry plane at the aft end of the 
water line. α is the flare-angle at the still water level and γ is the deadrise-angle, both at the maximum area 
section. The speed UFP close to the hull surface 4% of LWL behind the forward perpendicular is added because 
Raven [22] proposed to use the pressure coefficient of the double-body potential flow as an input to the 
computation of the wave resistance at low speeds. The pressure coefficient is defined as 1-(UFP/U∞)

2 and the 
speed UFP is taken from the potential flow calculation of chapter 2 above. 
 
A question that needs to be discussed is the influence of the height of the towing point above the still water level. 
This height equaled in the experiments a value between 9% and 20% of the LWL0. The varying lever arm creates 
different trimming moments from model to model; the influence of this variation was not corrected in [1]. For 
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some test runs an additional trimming moment at zero speed was applied by adjusting a movable weight on the 
centerline of the model. To compensate for these variations the following process is used for the new analysis: 
The trimming moment caused by the lever arm of the towing point relative to the center of effort of the hydro-
dynamic drag force and any additionally applied trimming moment at rest are added together. The sinkage and 
trim angle are calculated for this combined trimming moment in the hydrostatic program. All required geometric 
quantities are then determined for this trimmed position at zero speed. This process avoids the addition of further 
variables like towing height or trimming moment. The vertical position of the hydrodynamic drag force is 
assumed to be at the geometric center of the wetted surface. This is an acceptable approximation for the bare hull 
below planing speeds. On an appended hull the drag will act at a much lower position. 
 
There are files available in [2] with the geometric offsets (surface-points) of all tested hulls. From this source it 
was possible to calculate the required geometric quantities for all models. 

3.2 Dimensional analysis 

It is possible to reduce the 21 parameters by three through the introduction of dimensionless variables. The tool 
for this is the dimensional analysis. The choice of the parameter combinations is arbitrary, but it is helpful to use 
comparisons with analytical results as much as possible. The dependent variable can be compared to Michell's 
integral for the wave resistance. For a fixed Froude number the integral is in principle a function of the hull 
offsets: )(2

2
1 offsetsFURWAVE ⋅⋅⋅= ∞ρ . Therefore a good dimensionless form of the dependent variable is 
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It bears some resemblance to Telfer's resistance coefficient, but here the variable is dimensionless. The 
independent variables adopt several named dimensionless parameters already in use in naval architecture. 
Because LWL = L1 + L2, these three lengths can be interchanged in the dimensionless variables. The same applies 
to VCB = V1 + V2. For the dimensionless volume there are three possible forms in use: 
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The first version is the direct outcome of the dimensional analysis, the second is an often used form of lower 
order and the third is the prismatic coefficient. Which of these versions will give the best correlation can not be 
known up front. The prismatic coefficients are selected in a first try, the alternative forms will be checked in 
parallel. Similarly there are three forms for the dimensionless water plane area: 
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The first version is the water plane coefficient, the second is the form used in [1] and the third version is the 
vertical prismatic coefficient. In addition it is possible to define split versions for the fore- and after-body 
separately. All in all these are 9 possible versions. In preliminary tests the quality of the correlation was checked 
with all 9 versions and the winner was the water plane coefficient. The complete list of the 17 independent 
dimensionless variables for the further analysis is: 
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The four angles are already dimensionless and can be kept as they are. The pressure coefficient is designated CU 
as the traditional CP is already in use for the prismatic coefficient. 

3.3 Statistical inspection of the database 

Because of varying test speeds and the change of LWL by the trimming moment, the resulting Froude numbers 
were unevenly distributed. For the statistical analysis it is required to have sample points at discrete and fixed 
Froude numbers. With the means of rational cubic splines a new database was interpolated for all variables (9) at 
a maximum of 15 fixed Froude numbers from 0.10 to 0.80. This resulted in 1047 independent datasets. For the 
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highest Froude number there were only 17 test points available. As this number is too small for the planned 
regression analysis, the resistance curve of 19 models was extrapolated from Fn = 0.75 to Fn = 0.8. This brought 
the total number of datasets up to 1066. 
 
All textbooks on statistics recommend an inspection of the database before starting the regression analysis. 
Special attention should be given to the problem of collinearity. This arises when some of the independent 
variables are almost linearly dependent. To illustrate the problem one can imagine a sample of points (y,x1,x2) in 
space with y depending linearly (only to keep the example simple) on the variables x1, x2. If these points are 
dispersed properly, it is possible to draw a unique plane through these points. If x1, x2 become linearly 
dependent, the points are gathering along a line and the orientation of the plane in space is not robustly defined 
any more. Small changes in the variables (measurement errors) can even flip the plane. A measure of collinearity 
is the variance inflation factor VIF [23]. If it exceeds the value of 10, the regression will be affected by colline-
arity. Table 1 lists the results for Fn = 0.25. For other Froude numbers the results are practically identical. The 
first impression is depressing and many would regard the database as useless, but the case deserves a closer look. 
 

X Re CP1 CP2 CX CWP LCB LCB/ 
LCF 

B/L1 T/L1 T/L2 IE ER α γ CU BM/
L 

VIF 7.6 15.6 26.7 48.5 17.2 47.8 41.1 32.9 100.8 102.8 106.1 90.4 25.7 39.9 16.3 35.3 

Table 1.  Variance inflation factors for Fn = 0.25 

The VIF will grow large, if the independent variable in question is collinear with just one of the other 15 
independent variables. With so many variables this risk is high. In the final regression analysis only a subset of 
the variables will be used and it is possible to leave redundant variables out. A source of collinearity is also the 
process of the dimensional analysis. A single geometric length, e.g. LWL or a part of it, is used to make all 
variables dimensionless. As a result, all variables have a common denominator, which fosters collinearity. 
Another cause of collinearity is a small spread of the variables. Only half of the variations of the variables come 
from the large changes from one model to the other, the other half is caused by the change in the initial trim at 
zero speed. These trim changes produce only minor changes in the independent variables, which leads to a 
reduced spread. 
 
A helpful numerical experiment was conducted by Taylor [24]. A Monte Carlo simulation produced the result 
that the ill-effects of collinearity become only apparent, when the coefficient of determination R2 between two 
independent variables is larger than R

2 of the dependent variable in relation to the full set of the overall model. 
Table 2 was computed to test for this criterion. It displays the coefficients for the cross-correlation between 15 
independent variables for Fn = 0.25. The worst case is the correlation between γ and CX with a value of  
r = -0.942 i.e. R2 = 0.888. The value of R2 for the complete set of the 15 variables of table 2 in relation to the 
dependant variable Y is 0.931 and therefore slightly higher than the worst cross-correlation. According to Taylor 
this collinearity is still harmless. The situation for all other Froude numbers is similar and the collinearity seems 
to be tolerable. 
 

 BM/L CU γ α ER IE T/L2 T/L1 B/L1 
LCB/ 
LCF LCB CWP CX CP2 CP1 

CP1 -0.16 -0.61 0.38 0.17 0.53 0.74 0.14 0.34 0.59 0.07 -0.65 0.52 -0.50 0.36 1 

CP2 0.04 -0.20 -0.06 0.15 0.29 0.39 -0.06 -0.10 0.15 0.22 0.30 0.77 0.03 1 

CX 0.58 0.57 -0.94 0.09 -0.80 -0.75 -0.68 -0.77 -0.65 -0.71 0.55 0.12 1 

CWP -0.03 -0.33 -0.16 0.07 0.23 0.41 -0.14 -0.02 0.33 -0.20 -0.13 1 

LCB 0.33 0.51 -0.48 0.06 -0.42 -0.53 -0.26 -0.56 -0.64 0.11 1 

LCB/LCF -0.47 -0.30 0.78 -0.18 0.68 0.55 0.62 0.50 0.29 1 

B/L1 -0.45 -0.67 0.60 0.09 0.66 0.86 0.46 0.64 1 

T/L1 -0.87 -0.80 0.80 -0.55 0.88 0.63 0.93 1 

T/L2 -0.89 -0.73 0.72 -0.63 0.83 0.49 1 

IE -0.47 -0.73 0.71 0.03 0.84 1 

ER -0.77 -0.82 0.81 -0.41 1 

α 0.77 0.46 -0.18 1 Table 2.  Pearson's correlation coefficients at Fn = 0.25 
γ -0.58 -0.52 1 

CU 0.77 1 

BM/L 1 
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Interesting are individual values of geometrically uncorrelated variables. It is possible to design the exit angle at 
the stern ER independently from the ratio T/L1. An S-form in the keel line could produce any given value. 
Nevertheless these variables show a high cross-correlation of r = 0.88. Obviously the designer strived for a keel 
line with almost constant curvature that pleased the eye causing this correlation. It is important to know that 
resistance predictions for yachts outside of the DSYHS are only possible if these yachts are designed after the 
same rules. 
 
Rawlings et al. [23] write that if the regression is used only for prediction it is not seriously affected by 
collinearity as long as the prediction is restricted to the sample X-space. If the observed correlation structure of 
the sample (here the design philosophy for the hull) is not maintained, points may be far outside the sample 
space, even if well within the limits of each independent variable. They also mention the drawback of 
collinearity: It is not possible to identify the physically "important" variables, since the values of the correlation 
coefficients are distorted by measurement errors. The large coefficients of opposite sign are only cancelled out in 
the total sum. Miller [25] believes that the problems with collinearity stem from the usage of the normal 
equations for the computation of the least-squares fit. This is consistent with the recommendations of Press et al. 
[26] who encourage the reader to use singular value decomposition instead of the normal equations to avoid 
unstably balanced regression parameters, which are typical for multicollinearity. 

4. REGRESSION ANALYSIS 

Following the statements in the last chapter we may proceed with caution and use the database for a regression 
analysis with the aim to develop an equation for the prediction of the residuary resistance of the hull. A first 
decision must be made about the inclusion of the Froude number into the regression equation. Only a few 
researchers [27] tried to model the humps and hollows of the speed-resistance curve, but with limited success. 
The majority, including the staff at Delft, developed an individual regression for each of the evenly spaced, 
discrete Froude numbers. This method will also be used in this report. 

4.1 Theoretical background 

The prediction of the dimensionless resistance as a function of the independent variables can be regarded as an 
approximation of the true functionality by a Taylor series expansion. 
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XP is the vector of all m independent variables xj, evaluated at a point P inside the sample space. When using this 
equation for prediction, the point P and in consequence also the partial derivatives are kept constant. Equation 
(6) can therefore be rewritten with new constants Aj and Bjk 
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In practical applications a Taylor series is often terminated after the second order terms. This works well as long 
as the true functionality is not Y~ 1/x with a pole close to the sample space. In this case many higher order terms 
are needed to model the true behavior of the function. To avoid these cumbersome higher order terms, it is better 
to include 1/x as an additional independent variable. First test indicated that list (9) can be improved by adding 
BX/TX and replacing L2/L1 with T/L2, LCF with LCB/LCF and CX with 1/CX. It is also better to add both forms of 
the dimensionless Volume, the prismatic coefficients as well as the L/V1/3. The latter can be regarded as the 
addition of two more reciprocal values. This brings the number of the independent variables excluding Fn up to 
19. 
 
The following example serves as an explanation for the further process. Let us assume that we have only four 
variables x1…x4. These could be any four out of list (9). We also assume that for x1 and x2 the quadratic as well 
as the linear terms are needed for the prediction, whereas for x3 and x4 the linear terms are sufficient. In this case 
equation (11) becomes: 
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As this is only an approximation because we terminated the Taylor series after the first and second order term 
respectively, it is necessary to include an error-term ε to make the equation exact. For each fixed Froude number 
there are N different tank tests with either different models or different initial trims. So we have N points 
(xi1,xi2,xi3,xi4,Yi) in our sample. For each of these N tank tests we can apply equation (12). In the statistical 
nomenclature with new constants and new variables this is written as 

i
j

jijii XY εββ ++= ∑
=

7

1
,0)(X                                                        (13) 

The new variables Xij  represent the linear, quadratic and mixed forms of xi1…xi4. Linear regression will 
determine the coefficients βj in such a way, that the sum of squares of the error-term is minimized. The error-
term is also called residual, therefore the sum is named residual sum of squares RSS. 
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In our example there are 8 regression coefficients β. If all the quadratic and mixed terms are included in the 
regression, M increases very quickly, as the number of variables x is increased. The 19 independent variables 
that have been defined till now would result in 210 different regression coefficients β. Since the sample size N 
varies between 36 and 91, only a subset of the coefficients can be used. If the number of coefficients equals the 
number of test points (N = M+1), RSS will be zero and the predicted Y will be identical to the measured one. 
This is not desirable, because the coefficients will most likely model to the greater part the measurement errors 
instead of the physical dependency of the resistance. The choice of M is a balance between the introduction of 
bias, caused by the selection process, and the "noise" in the prediction by using too many coefficients 
("overfitting"). The number of coefficients is M+1, because the constant coefficient β0, called the intercept, must 
also be determined. 
Some authors recommend reducing the number of the mixed terms first, while leaving the linear and quadratic 
terms in the model. Fung [20] argues, that mixed ("cross-coupling") terms should only be included if "such terms 
can be proved to have real physical significance". How is this possible? Equation (10) is a mathematical 
approximation of an unknown functionality with a polynomial. The true function of Y is by all means not a 
polynomial and the single terms of the mathematical approximation can not necessarily be identified with 
hydrodynamic properties in the flow. Leaving out the mixed terms xi·xj is equivalent to the assumption that xi and 
xj are the principal directions and the curvature of Y has a maximum or minimum along these directions. This 
assumption is normally not justified. Huetz and Guillerm [4] use 13 parameters, only linear and quadratic but no 
mixed terms. A reason for this choice is not given. Sahoo et al. [28] insist that "when a regression equation has 
two highly correlated variables…it is wrong to include their product". This is a direct quotation from Fairlie-
Clarke [29], who in turn quoted this from J.R. Scott. This quotation is correct if the two variables are fully 
collinear, but why then would one include a completely redundant variable into the regression at all? To the 
other extreme Fung [20] cites in his literature survey regression methods that used up to 53 terms, including 
mixed terms up to the 6th order and Lin et al. [19] use 21 linear parameters and in addition 33 higher order and 
mixed terms. In the following analysis it will be decided for each variable that is entered into the regression, 
whether its influence should be linear or quadratic. In the quadratic case the linear and the quadratic terms are 
entered plus all mixed terms that contain the new variable and the quadratic variables already in the regression, 
just as in the example equation (12). 
 
The task is now to select a prediction model with only a few of the 210 possible coefficients. In theory there are 
2210 = 1.6·1063 different possible models! We therefore need a process for the selection of a good, hopefully the 
"best" (whatever that means) subset of variables. Variable selection in regression has received an enormous 
attention in the literature in the last 20 years. The state of the art in 2002 is described in [25]. 

4.2 Variable selection 

One possibility is to select the variables manually by experience, intuition or trial and error. A first guidance for 
the significance of the predictor-variable is its direct correlation with the dependent variable. The correlation 
coefficients for some of the variables, linear as well as quadratic terms, are depicted in figure 3. A striking 
feature is the sign-change of the correlation coefficients between Fn = 0.35 and 0.45. An increase of e.g. T/L2 
will decrease the resistance at low Froude numbers, whereas it will increase the resistance at higher speeds. The 
wave system created by the hull could give an explanation for this effect. At Fn = 0.4 the length of the wave 
created by the bow equals LWL, the second wave crest is therefore at the stern. At speeds below Fn = 0.4 the stern 
is supported by the second crest of the bow wave, whereas above Fn = 0.4 the crest is behind the ship, the stern 
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falls into the trough, the bow goes up and the ship is driven "uphill". It seems to be logic that parameters that 
influence the trim have an opposite effect in the two Fn-regimes. This occurrence of speed regimes where 
parameter influences change might indicate the necessity to use different variables for modeling different speeds. 

Figure 3.  Correlation of the individual Xi to the Yi 

In a first test only 17 linear variables without Re and B/T were included in the regression analysis. This can be 
regarded as the starting point of the variable selection process. The quality of fit is measured by the standard 
deviation of the residual sum of squares. The definition is: 
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The denominator under the root sign represents the degrees of freedom of the error vector. The RSS in itself is 
not a good measure of fit, because it decreases with each added variable till it reaches zero. The RSS of a subset 
will always be higher than the RSS of the complete set. The standard deviation is a better measure, because it 
will increase, if an additional variable only adds noise and no useful information. The target is therefore to find a 
subset with a low standard deviation. 
 

Fn 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 
 

 
 

M+1 N 42 58 75 90 91 91 91 91 90 88 79 57 49 38 36 

linear terms 
only 

18 σ [%] 59.3 28.8 21.4 15.3 12.5 9.6 6.7 5.0 4.1 3.8 4.8 4.7 4.3 3.9 4.8 

manual 
selection 

28 σ [%] 62.1 31.1 22.7 15.1 10.9 8.8 5.5 4.6 4.0 3.5 4.3 4.1 2.7 3.5 4.4 

Lasso 25 σ [%] 39.3 26.6 17.5 12.0 11.3 8.8 5.8 4.1 4.3 4.6 4.4 2.3 2.3 2.3 2.4 

individual for- 
ward selection 

21-28 σ [%] 41.4 23.2 17.3 13.0 9.5 7.6 4.2 3.8 3.5 3.4 3.9 3.6 2.8 2.4 3.7 

individual full 
search 

25 σ [%] 29.9 19.6 16.2 11.6 8.3 6.9 3.9 2.7 2.9 2.8 3.3 2.6 1.8 1.8 1.6 

full search in 
blocks 

25 σ [%] 42.9 21.4 17.0 13.2 10.3 8.4 3.9 3.4 3.0 3.2 3.4 3.1 1.9 1.9 3.9 

Table 3.  Standard deviation σ of the residual sum of squares in % of the mean 
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The results for the regression with 17 linear variables are listed in table 3 for each Froude number. To make the 
values comparable, σ was standardized for each Froude number separately with the mean value of the Yi. In a 
next step the quadratic and mixed terms for 4 variables were added. The selection of the quadratic variables was 
guided by the correlation results in figure 3. The result is listed in table 3 in the line "manual selection". It can be 
seen that below Fn = 0.25 there are too many terms, σ has increased compared to the linear case. 
 
Searching the literature of the last decade on variable selection, there is one algorithm that stands out. Many 
authors recommend as best practice the use of Lasso (least absolute shrinkage and selection operator) [25]. In 
Lasso equation (14) is minimized for the standardized variables subject to the constraint 

s
M

j
j ≤∑

=1

β                                                                    (16) 

where s is a threshold that is gradually reduced. In each step s is adjusted in such a way, that one of the 
remaining constants βj is reduced to zero and removed from the list. The results are often better than the manual 
selection, see table 3, but there is one big disadvantage: in a large number of cases there were mixed variables 
selected, without selecting the involved linear or quadratic terms which is not consistent with the requirements of 
equation (10). 
 
It would be good to have a selection process that allows at each step to control the way how the variables are 
included, be it linear or quadratic, including mixed terms. A method that allows this is the forward selection. 
This method has a bad reputation [25], which might stem from the fact that the minimum of the RSS is only 
considered for the next step. This is comparable to a chess player who makes his decisions only looking one 
move ahead. In reality a good player anticipates the next possible three or four moves and is guided in his 
decision by the analysis of all possibilities. A method was therefore programmed, that extends forward selection 
to the analysis of all the next possible four selections. For the initial set of 12 variables one has the choice at each 
step between 12 linear variables and 12 sets of quadratic and mixed terms. For each of these 24 choices there are 
again 24 possible choices in the next step and so on, all together 3.3·105 possibilities. Out of all these possi-
bilities that path is identified that gives in the end the smallest standard deviation. This path consists of four 
variables, either in the linear or quadratic form. Out of these four variables the one is selected that allows the 
largest reduction of σ in the first step. After this selection, the whole process is repeated, always looking four 
steps ahead. The results of this stepwise regression are depicted in figure 4. A different behavior is again visible 
between the speeds below Fn = 0.4 and above. The first coefficient on the abscissa represents β0, which is just 
the mean of all experimental values Yi at that specific Froude number. If we look at Fn = 0.15, the standard 
deviation of the distribution of the Yi around this mean is 79%. By introducing the dependence on the hull 
parameters it is possible to reduce σ down to 23%. The optimum (= minimum) is reached at M+1 = 23. If we 
look at Fn = 0.4, the picture is quite different. The standard deviation of the mean is only 14% and can be 
reduced by the inclusion of the hull parameters down to 4.8% for M = 20. So one can notice that at Fn = 0.4 the 
resistance is almost fixed and nearly independent of the hull parameters. At  higher  speeds  the  picture  is  again 

 

Figure 4.  Standard deviation σ as a function of the number of coefficients (= M+1) 
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similar to the low ones, e.g. at Fn = 0.5 the mean is 29% and it can be reduced to 3.5% at M = 21. The results of 
the stepwise forward regression are also included for comparison in table 3. This method yields slightly better 
results than the Lasso but, more important, avoids the drawback of the inclusion of mixed terms without the 
corresponding linear and quadratic terms. 
 
A problem that has not yet been discussed is the stopping criterion. In a search of the naval literature on 
regression analysis it was found that authors e.g. [20], [30] and [31] had only intuitive and arbitrary criteria. The 
decision on how many variables to include and when to stop is the balance between under- and overfitting. 
Burnham and Anderson [32] explain that an underfitted model is too simple, has large bias and fails to identify 
effects that are supported by the data. An overfitted model includes spurious variables and errors due to random 
fluctuations (measurement errors). According to them, underfitted models present a more serious issue in 
variable selection than overfitted models. In the previous paragraphs the change in σ was used as a stopping 
criterion, but it gives no sharp cut-off and the minimum occurs sometimes at astonishing high values of M. A 
stopping criterion that is especially suited to cases where M is not small compared to N is the second order 
variant of Akaike's information criterion [32]: 
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Miller [25] reports a form where K = M+1, but the differences are small. The relative AICC values for the points 
of figure 4 are shown in figure 5. The optimal M is the minimum of AICC. With the exception of the special case 
Fn = 0.4, the optimal number of coefficients is always less or equal 25. A closer look at the selected variables 
shows that the optimum contains always 5 quadratic forms including the 5 linear variables and additionally one 
to four other linear variables. 

Figure 5.  AICC as a function of the number of coefficients (= M+1) 

All books on statistics agree that the only sure way of finding the best fitting subset is the exhaustive search. 
With the knowledge from the forward selection process as described in the last paragraph it is now possible to 
limit the complete search to a manageable size. If we chose out of 18 variables 5 variables with quadratic and 
mixed terms and 4 variables with linear terms only, the number of coefficients is limited to 25. In this case there 
are 6.13·106 models per Froude number. A complete inspection of all these models for all Froude numbers can 
be performed within a few days on a modern PC. During this analysis some peculiarities could be observed. 

o The choice of additional variables depends on the number of coefficients. Let us assume that besides Xi1 to 
Xi4, Xi5 is a variable with a good correlation, but the combination of Xi6 and Xi7 models the influence even 
better, then Xi1 to Xi5 will be chosen if the number of coefficients is restricted to 5. If 6 coefficients are 
allowed Xi5 will be dropped and Xi6 and Xi7 will be chosen instead. It is therefore almost impossible to 
recognize a pattern in the choosing process. 

o Sometimes it was possible to get the same standard deviation σ with different sets of variables. This is a 
sign that there are redundant variables in the list. The full search with a tightly limited number of 
coefficients avoids the inclusion of redundant variables. 
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o Often a good correlation could only be achieved for part of the experiments. One set of variables gave a 
good correlation for the old models of series 1, but did not predict well the newer models and a different set 
of variables predicted the new models well, but not the old ones. This was taken as an indication that more 
than 25 coefficients are needed in a set. 

o When more than 25 coefficients were used the prediction was not as robust as needed. This became visible 
when the height of the towing point was varied. As soon as the limits of the DSYHS sample space were 
surpassed the predicted curve of resistance vs. Froude number exhibited strong oscillations. 

o The AICC values were a good guidance to distinguish between competing models with a different number 
of coefficients when the difference in the standard deviation σ was small. 

These problems with conflicting demands are not solvable. The compromise that was chosen first, allowed 
different variable selections for different Froude numbers. The results of the full search can be found in table 3 in 
the line "individual full search". They are the best in the whole table. This selection together with Lasso and the 
individual forward selection have a big disadvantage in common; they use different sets of variables for each 
Froude number. From a hydrodynamic point of view this is questionable. The selection will most likely be 
driven by measurement errors. The resulting correlation equation predicts the measured values very well, but it 
fails, when the height of the towing point is varied or when it is applied to new models, not in the DSYHS. In 
such cases the predicted curve of resistance vs. Froude number is wavy and not smooth. 
 
In the next step the full search was therefore programmed to find the optimum set for a range of consecutive 
Froude numbers. The full range from 0.1 to 0.8 was divided into 3 blocks, guided by figure 3. For each block a 
separate set of variables was determined. The resulting standard deviations are listed in the last row of table 3. 
The AICC values of the selected regressions are entered as single large symbols at no. 25 into figure 5 for 
comparison. The results are not as good as in the case of the individual search, but the robustness of the resulting 
correlation was considered to be more important. The subsets that were finally chosen are compiled in the upper 
half of table 4. 

 

 fore body after body entire hull max. area section 

Fn CP1 L1/V1
1/3 T/L1 B/L1 IE CU CP2 L2/V2

1/3 T/L2 ER LCB LCB/LCF BM/L CWP 1/CX B/T α γ 

0.1 – 
0.35  X  X I I I    X   X X  I  

0.4 – 
0.5    I  I X X I X X   X I    

0.55 
– 0.8    I X  X  X  I X X    I I 

outside DSYHS: 

0.1 – 
0.35 I   I I I  I I    I I I  I  

0.4 – 
0.5 I I   I I   I  I I I   I  I 

0.55 
– 0.8 I   I   I  I   I I I I I I I 

I = linear term only              X = linear, quadratic and mixed terms 

Table 4.  Finally selected variables 

The choice of the Froude number ranges is arbitrary and influences the results of the full search. As already 
indicated, the collinearity of the variables does not allow the identification of the physically "right" parameters, 
they are disguised in the "noise" created by the measurement errors. Many more models, a much larger sample 
size and most likely smaller measurement errors would be needed to identify the variables that really determine 
the wave resistance. The current selection does not render the prediction invalid, one just has to accept, that the 
uncertainty of the measurements is not averaged out, but is contained in the predicted resistance. 

4.3 False friends 

At first sight the Reynolds number is closely correlated with the resistance. Computing the probability of the null 
hypothesis by a comparison with Student's t-distribution gives a zero probability for the case that no correlation 
exists between Re and Y. Numerical values are listed in table 5. In addition table 1 shows that Re is the only 
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variable that is not strongly correlated with other variables. So Re seems to be an ideal predictor variable. On top 
it is not difficult to find physical arguments that viscosity should have some influence on the residual resistance. 
For all these good reasons Re was included in the regression analysis and the linear term was kept in the final set 
of predictor variables. When comparing the predicted resistance with the measured values of the DSYHS, the 
agreement was very good. The surprise came, when a comparison was made with tank test data for a model of 5 
meter length. The maximum length of the DSYHS models is 2 meter, so there is a substantial extrapolation 
necessary for this prediction. The results were hilarious, extrapolation was not possible. An inspection of the raw 
data was the only way how to find the root cause of this false regression model. Figure 6 shows experimental 
data for Fn = 0.25.  

 
 
Figure 6. Correlation between 
 dependent variable Y and 
 standardized Reynolds 
 number at Fn = 0.25 
 
 
 
 
 
 
 
 
 
 
 
 

This Froude number is picked, because the results are typical. Several different model families were used in the 
DSYHS with three different model lengths. The length was kept constant within the family; therefore the points 
are clustered around 3 Reynolds numbers. The family with the short model was the old design with a V-shaped 
forebody, whereas the longer models had a modern dinghy-like hull. So it is clear that the model length was not 
chosen randomly. The variation of the Reynolds number was not extended across all the different hull forms and 
can therefore not be used for the regression. As a consequence the whole analysis as described in the previous 
chapters had to be repeated, this time without Re in the subsets. The standard deviations σ were equally as good 
as before. To make sure that the drop of Re from the variable list was right, a regression with the final sets of 
table 4 was performed. The predictions were calculated and then the residuals εi, as defined in equation (9), were 
correlated against Re. Results are in table 5. 
 

 Fn 0.10 0.15 0.20 0.25 0.3 0.35 0.40 0.45 0.50 0.55 0.6 0.65 0.70 0.75 0.80 

R
2 0.311 0.149 0.076 0.125 0.097 0.028 0.358 0.545 0.614 0.638 0.617 0.587 0.586 0.604 0.618 Correlation 

with Y Probabil. 0 0 0.02 0 0 0.12 0 0 0 0 0 0 0 0 0 

R
2 0 0.003 0.001 0 0.003 0.006 0.002 0.004 0.001 0.002 0.003 0.001 0 0 0 Correlation 

with ε Probabil. 0.97 0.70 0.85 0.99 0.59 0.45 0.70 0.56 0.78 0.68 0.62 0.80 0.90 0.96 0.98 

Table 5.  Correlation of Re against the measurements and against the residuals  

The coefficients of determination are all close to zero. The values of the probability are again for the hypothesis 
that there is no correlation. It shows that with a probability between 45% and 98% a random selection would 
yield the same correlation. So in this case it is proven, that the residual errors do not correlate with Re and it is 
absolutely right to leave Re out. This is a classical example of selection bias during the design of the 
experiments. 

5. PREDICTED VS. EXPERIMENTAL RESISTANCE 

5.1 At model size 

At the end of his publications Prof. Keuning usually compares measured and predicted resistance curves to give 
an impression of the quality-of-fit. The chosen examples are always the parent models of the DSYHS without 
additional trimming moment [1]. If the same comparison is made for the new regression with the variables of 
table 4, the difference between Keuning's prediction results und the new formula is only small and the additional 
effort of the new method would not be justified. The picture changes, when the complete database of all 1166 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.7 0.8 0.9 1.0 1.1 1.2 1.3

Re / Mean(Re )

Y

Fn = 0.25



© Ulrich Remmlinger, page 15 

test points is inspected. Figure 7 compares the predicted and experimental values of the total resistance for the 
new regression and for the Delft-method with the addition of the influence of the trimming moment as described 
in [1] and [21]. The Delft-method uses all in all 14 regression coefficients. The definition of Ytot in the diagrams 
is similar to equation 8. Rtot is either the measured total resistance or the sum of viscous and residual resistance: 
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                                                                    (18) 

Figure 7. Total resistance coefficients for all experiments  0.1 < Fn < 0.77 

In the ideal case all points would be lying on the diagonal line. A high value of the kurtosis is a clear sign that 
the distribution is peaked and not normal (Gaussian). Initially the kurtosis of the new regression was almost as 
high as for the Delft-method. In such a case there are many predictions very close to the experimental value but 
also many points in the wide tails of the distribution where the prediction is far off. This led to the conclusion 
that there must be additional effects that are not covered within the initial set of variables. The process was 
therefore restarted in chapter 3.1 with the definition of new additional variables. The right diagram in figure 7 is 
the result for the final variable selection of table 4 with significantly reduced standard error and also kurtosis. 
 
The red dashed lines in figure 7 indicate the 2·σ bands. In case of a normal distribution of the errors, the ± 2·σ 
band would contain 95% of all test points. Because of the high kurtosis the distribution is not normal. With a 
sample size of 1166 it is possible to determine the quantiles empirically by counting. Astonishingly the results 
(95%) are in both cases identical to the values of the normal distribution. The statistic evaluation shows that the 
standard deviation and also the error band are reduced by a factor of 3 in the new formula, compared to the 
Delft-method.  Helpful is also a look at the relative error of the predicted total resistance in figure 8. The 
prediction error is calculated from 

Yerror = Ytot predicted – Ytot measured. 

It is reduced with the new method from 16% to 5%. The relative error is obviously larger at the low end for 
small Fn. This trend is more pronounced in the Delft regression than in the new one. The reduction of the errors 
is significant but it must be pointed out, that these errors are only valid for models of the DSYHS. For models 
outside of this database the error will be larger because of the selection bias in the regression analysis. 
 
The kurtosis of the final selection is still high and the distribution is not normal. It is therefore interesting to have 
a look at the statistical distribution of the prediction errors for the new regression. 
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Figure 8. Total relative resistance error for all experiments  0.1 < Fn < 0.77 

The deviation from the normal distribution with a peak at the mean and missing values at medium distance to the 
mean is clearly visible in figure 9. Another way to look at this picture is the assumption of a normal distribution 
caused by the measurement errors and on top a superposition of a random error caused by an unknown 
parameter. Figure 10 depicts this hypothesis by assuming a smaller standard deviation for the normal 
distribution. 

 
 
Figure 9. Distribution of the 
prediction error and comparison 
with normal distribution of equal 
standard deviation 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 10. Distribution of the 
prediction error and comparison 
with a normal distribution of 
reduced standard deviation 
 
 
 
 
 
 
 
 
 
 
 
 

The unknown parameter that causes additional randomly distributed small and large errors is not necessarily a 
hull parameter. It could also be the influence of the towing tank set up. The roughness strips are changed 
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between the test runs, this could have an influence. Normally the measured resistance is time dependent and an 
averaging process is employed, which is unknown. Without a detailed knowledge of the experimental process 
and ideally the inspection of the raw data, a further analysis is not possible and the current error must be 
accepted. 

5.2 Extrapolation to full size 

It was already mentioned that the viscous resistance and the wave resistance are scaled differently when 
extrapolating to full size. A sensitive example is the model Sysser 26, because the viscous resistance according 
to the Delft-method differs quite a bit from the result of the boundary layer calculation. The comparison at model 
size is depicted in figure 10 on the left side. The drag coefficient has the same definition as in figure 1. There is 
an agreement between predicted and measured resistance. At full size the total drag calculated with the Delft-
method is about 18% lower than the new prediction, based on the b.l.- calculation, depicted on the right side of 
figure 10. The different total drag coefficient at full size leads with a scaled towing height also to a different 
trimming moment which in turn results in a new residuary drag coefficient. This change in trim when 
extrapolating to full size is not considered in the Delft-method. If the new prediction is valid is an open question, 
as long as there are no towing results at full size available. Right now it is a better founded guess than the Delft-
prediction. 

Figure 10. Drag coefficients for model and full size 

6. HULLFORMS OUTSIDE OF THE DSYHS SAMPLE SPACE 

At the end of chapter 3.3 it was explained that the predicted resistance can be far off, if the hull parameters and 
the design philosophy are not covered by the range of the tested models in the DSYHS. In such a case an 
extrapolation of the regression is required. Keuning and Katgert [1] deleted all higher order terms in their 
regression because, as they stated, these terms weakened the robustness and stability if the prediction has to be 
made outside of the parameter range. Following this advice an additional regression analysis was performed, this 
time limiting the parameters to the linear terms only. To broaden the covered parameter range three additional 
models were added to the database. Available were tank test data of a Dehler 33 [33], a Delft-372 [34] and of the 
Inui S-201 [35]. The number of variables was chosen with the help of the AICC. The selected variables are 
indicated in the lower half of table 4. The resulting standard deviations are listed in table 6. 
 

Fn 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 
 

 
 

M+1 N 44 61 78 93 94 94 94 93 92 90 81 59 51 40 38 

linear full 
search, blocks 

11-12 σ [%] 66.0 31.2 25.7 18.6 13.4 10.9 6.7 5.0 4.6 4.6 5.0 4.9 4.1 3.0 4.1 

Table 6.  Standard deviation σ of the residual sum of squares in % of the mean 
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These deviations are roughly 50% higher than the values for the regression that includes the quadratic and mixed 
terms. It is advisable to use both predictions in parallel and check them for plausibility if a hull form does not fall 
clearly into the range of the DSYHS models. 
 

7. CONCLUSION 

The new regression model improves the prediction of the bare hull resistance compared to the Delft-method for 
models within the DSYHS. Future comparisons will tell, if the improvements will consistently appear also with 
different and new designs. To enable this necessary feed-back, a new prediction-software will be developed and 
will soon be available online. 
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