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Lifting Line Theory of a Wing in Uniform Shear Flow*

By Kuninobu MORITA**

In the axial tfrpe fans and compressors, the velocity distribution relative to the blades
is generally not uniform. Therefore, in the practical applications, it is important to find
the characteristics of the wing in non-uniform flow.

In this investigation, the characteristics of a finite large aspect ratio wing in uniform
shear flow with the velocity varying in the spanwise direction are analized by the singularity
method which is different from the method adopted by von KArmAn and Tsien. As the
result, the characteristics of arbitrary wings are obtained concretely, and, at the same time,
the physical difference between the characteristics of wings in uniform shear flow and those
in uniform potential flow is clarified. Futhermore, the wing planform and its aerodynamic
forces satisfying the condition of the minimum induced drag are given analytically.

1. Introduction

In general, the relative fluid flow toward the
blades of axial-type hydrodynamical machines is
not uniform in the spanwise direction, nor is it
in the direction perpendicular to the blade sur-
face. For example, even in the case of a heli-
_copter-rotor, which may be called one of the most
) simple hydrodynamical machines, things do not
change at all. The characteristics of a wing
which is placed in such non-uniform flow are
different from these of a wing in uniform flow.
Therefore, in order to establish a precise design
theory for hydrodynamical machines, it may be
very important to analize the problem of this
" kind, i.e., the characteristics of a wing in non-
uniform flow.

Lately, many theoretical investigations have
been made for the blade characteristics of the
axial-type hydrodynamical machines taking the
flow non-uniformity into account. Honda‘" has
analized, on the assumption of small perturba-
tion, the characteristics of a wing between
parallel walls, toward which the fluid flows with
a spanwise-nonuniform velocity distribution.
Namba and Asanuma®® also have treated
this kind of problems taking account of the
fluid compressibility. Tsien™®, Sowyrda® and
Jones® have theoretically studied a two-dimen-
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sional case in which the relative fluid velocity
changes perpendicular to the airfoil surface.

These investigations are all concerned with
axial-low machines which are housed in the
casings of cylindrical type. Contrary to these
cylindrical casing type machines, in the case of
airplane wings, helicopter-rotors, non-pressure
type axial flow fans such as electric fans and
so forth, one (outer) tip or both (outer and
inner) tips of the blades are completely exposed
to the surrounding flow field. Accordingly,in the
theoretical analyses for such exposed-type axial
fans, some different mathematical procedure
must be adopted. In this connection, a few in-
vestigations have been made on the problem of
a finite wing in inviscid shear flow.

The present author® has analized the cha-
racteristics of a finite low-aspect-ratio wing in
uniform shear flow on the basis of the assumption
which is analogous to the Jone’s finite wing
theory(™. This theory is, however, applicable
only to a low-aspect-ratio wing. Meanwhile, large-
aspect-ratio wings or blades are in use in many
axial-flow fans, blowers, pumps, and further, in
airplanes and so forth. Therefore, we can not
neglect the importance of obtaining the character-
istics of a large-aspect-ratio wing in shear flow.

In the present paper, the characteristics of
a finite but large-aspect-ratio wing in uniform
shear flow with the velocity varying linearly in
the spanwise direction are analyzed introducing
the concept of the lifting line theory.
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Von Karméin and Tsien® developed the lift-
ing line theory for a finite three-dimensional
wing which is placed in shear flow with arbitrary
velocity distribution. In their investigation, the
wing characteristics are obtainable quantitatively,
if one solves the integral equation and the dif-
ferential equation with a given free flow velocity
profile function. However, in their paper, the
method of solving these equations is not presented,
and hence, we can not know the quantitative wing
characteristics immediately. Furthermore, their
mathematical procedure is a Fourier integral
method; the wing characteristics are analyzed
supposing that the perturbation pressure may be
represented in the Fourier integral. Accordingly,
numerical works are rather complex.

In the present investigation, on the contrary,
the singularity method is adopted: this method
has close relation with the Prandt!l’s vortex method
for the lifting line theory in uniform potential
flow. As the result, the wing characteristics can
be easily calculated by solving the system of
algebraic equations, and the numerical examples
for the rectangular wings and for the wings with
minimum induced drag will be presented.

2. The equations of motion and the
boundary conditions

In the present chapter, the equations of motion
will be linearized on the assumption of small
perturbation, and the Prandtl-type integral equa-
tion for a large-aspect-ratio wing will be derived.

Now, as shown in Fig. 1, let us take the
Cartesian co-ordinate system (z, y, z) with the
origin fixed in the mid-span of the wing. An on-
coming free flow is parallel to the =z-axis. Let
station y=—c denote the zero-velocity point of
free flow. Then, the free flow velocity U(y) will
be given by the expression

U(y) =K(YAc) worerrmmrrenmemernnneniieeii, (1
The present investigation is limited to the case
that the zero-velocity point of free flow is not

located on the wing surface (¢>dy). The analysis

in the case of ¢<d-will be presented on another
occasion.

The fluid is considered to be incompressible
and inviscid. Let u, v and w denote the pertur-
bation velocities in the z-, y- and z- directions,
respectively, and assume that they are small
compared with the free flow velocity U(y). The
pressure p represents the perturbation pressure.
The equations of motion and the equation of:
continuity will, on the assumption of small
perturbation, be written as follows.
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o  dU  10P _ o
Uax+vdy+p ax—O (2)
00 L1 0P e,
U8x+P oy =0 (3
0w 10D _ o e,
Ua +p 5 =0 (4)
Ou 0V 0w _ o e,
6x+82/+az_0 (%)

where P denotes the density of the fluid.
The boundary condition is shown as follows:
at infinity
£<0, (a?+y*42%)2—00; u, v, w,p—0 -+~ (6-a)
23>0, (224+92)2>00; u, v, w, P—>0---vreveees (6-b)

‘In the lifting line theory, the precise boundary

condition on the wing surface is not necessary,
because the wing is represented by the “lifting-
line ” located at —dp<y=<dy on the y-axis, and
the following assumption is introduced: an each
spanwise wing section is assumed to have the
same characteristics as that of a two-dimensional
wing which is set at the “ effective angle of at-

tack”. The ‘“effective angle of attack” a, is
given by
w(0, y,0)
a‘:a—l-— ................................. 7
U (7

where « denotes the geometrical angle of attack.

Eliminating u, w and p from Eqgs. (2), (3),
(4) and (5), we can get the following equation
for .

ro . 0% _ 0%

Uw| o T o T oz ]—U"(y)vZO ------ (8)

where U’’(y) represents the second order deriva-
tive of U(y). Because we take only uniform
shear flow into consideration, U’’(y) is always
equal to zero. Thus, Eq. (8) yields immediately

0%v = o*v o™

o + o + 2 =0 e s (9)
From Eq. (3) and (4), p and w are given in
the following forms in terms of v.

p:_pﬁwaép)%dy] .............................. (10)

X

Fig. 1 A wing in uniform shear flow and system
of coordinates
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_z (o d]’ an
w= U( 5 f UC’D ~d7 - ~Aan vy ) =5 -t &1 =D
Now, because the govermng differential equation =200, Y, Z2)  crcrecereerereiteniaii, (18)

for v is the Laplace’s equation, v is supposed to
be expressed in the similar form to one given
in potential flow; as shown in Fig. 1, the trail-
ing vortices form a 'sheet of vortex behind
the wing, and hence, there must be a velocity
discontinuity for v- across the sheet., Accord-
ingly, v may be given in the following form
by the analogical inference from the lifting line
theory in potential flow.

do 4] 1
vz, 3, 2)= 4 fdo an  (y—n)* 422
. x
X(1+\/x2+(y_77)2+22>d7] .................. (12)

where [7(7) corresponds to the circulation of a
wing in potential flow, and d/’/d?7 to the strength
of trailing vortex. Of course, the lift distribution
1(y) can not be expressed in pU(y)I (y), because
free flow is not uniform. The relation between
1(y) and I'(y) will be established in the following
way. By substituting Eq. (12) into Eq. (10), we
obtain
0z v do ]
="y —ooU.(y){\[—do‘dv
an
X GG ny
The perturbation pressure p thus obtained
has discontinuity between the upper (z—+40) and
the lower (z——0) ‘“surface” of the lifting line.
When we put z—+0 in Eq. (13), » tends to infin-
ity, whereas the- integrated value of p remains
finite. Now, let ¢ be a small quantity, and write
p» as p. when we put z—+0. When we notice

p.=—p_, we have ‘
1 e 1 .
S = pde, =AW= | pidx oo (14)
Furthermore, since we get
lim { f .’ 47 da
to 4T do d7- [a*+(y— v>2+22]3/2f
_14ar
=g (15)

the local lift force l(y) can be given

=" vy

when U(%) is put to be constant U,, that is, when
the free flow is uniform, Eq. (16) agrees with
Kutta-Joukowski theorem, [(y)=poUo] (¥).

In the next place, “down wash” w(0, y, 0)
will be acquired. From Eq. (12), we can get
v (0, vy, 2z) and v(y, z) which is the perturbation
velocity v far behind the lifting line, say

_&g (Pdl’ 47
00,3, =1 o an

From these expressions, it can be concluded that
the perturbation velocity » on the plane z=0 is
one half of vw. This conclusion agrees perfectly
with that by von KArman and Tsien®., Similarly,
substituting Eq. (12) into Eq. (11), we can get
w(x,y,2). According to the lifting line theory,
however, only the “down wash” at the lifting
line is needed. Von Karmén and Tsien‘® proved

W((),y’z):%ww(y’?)..........L ............. ceee(19)

where w«(y,2) denotes w on the Trefftz plane.
Since Eq. (11) holds even on the Trefftz plane,
we have :
1 (do dJ” y—7
WO == [
" "do ] [ (y~7])2+22} ”
87f(y+c) —do 47 (c+m)2+22

When we put z—0 in Eq.. (20), the down wash
at the lifting line can be acquired, and the effec-
tive angle of attack is given.

. JE 1 dr
’ 4ﬂK(y+6) 1,Yy—"N Ay
1 do 4" y—7 ’
VRt o Joae dn 08| gy (41 D

Now, the local lift force can be written in
the following form, since in the lifting line theory,
the characteristics of the wing at each section
are supposed to be equal to those of a two-dimen-
sional wing working at an angle of attack «..

R O I m— 2

where b(y) and £ denote the local chord length
and the lift curve slope 9Cr/da. of the two-dimen-
sional wing, respectively. _

From Egs. (16), (21) and (22), we have an
integral equation whose unknown function is /().

U(y)b(y)/c % 1 4"
f O d77 8 [Jc_day—v an ¢
1 do dF y—7
e Jﬁ-ao dn gI c+n’d’7}
:-g—UZ(y)b(y)aQ/) .............................. (23)

Naturally, this equation agrees perfectly with
the Prandtl’s integral equation in potential flow,
when the free flow velocity U(y) tends to the
constant value U,.

- In the next chapter, aerodynamlc forces such
as the lift force, the induced drag, etc. will be
presented by using /'(y). Further, in the chapter
4. the integral equation will be solved.
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3. The aerodynamic forces

In the present chapter, the total lift force,
the induced drag, etc. will be presented, and fur-
ther, the condition for the induced drag to be a
minimum will also be shown.

By integrating the lift distribution I(y) given
in Eq. (16) along the span, we get the total lift
force.

L=p f . _dOU(n)_dv}dy .................. 240

As shown in Fig. 2, the induced drag D; can be
calculated by integrating the xz-component of I(y)
along the span.

Di=—fd°l(y)dai(y)dy ........................... (25)
—dy

where Ja;, which is an * induced angle of attack”,
is given by

The condition for the wing realizing the
minimum induced drag is written as

d
L=f ° 1(y)dy: constant
—do

d
D;= _f : () dai(y)dy: minimum

This equation can be calculated by means of the
variational principle.

Aa;(y)=dao (constant) ........................ (28)
The minimum induced drag is given by the con-
dition that the induced angle of attack Aa:(y) is
constant along the wing span. Accordingly, ['(%)
which satisfies this condition is derived from

Eq. (26), )
1 [ 1 df 1
T 4m Jay—7 dn Y o
do dF
l ]d??:U(y)Aao ............ (29) )

where the symbol “~7” is affixed to I'(y) of the
wing with the minimum induced drag. The in-

duced angle of attack Aao, which is an unknown

constant in Eq. (29), can be determined such

L)

7\ 7\ AN Wing section
Ca.Q) N
A0 Sw(0,%,0) -
u)

F1g 2 The relation between the lift and the
induced drag

that ['(y) may satisfy the integral equation (23).

In general, the lift distribution I(¥) must be
always equal to zero at both tips. In' potential
theory, this requirement can be satisfied by mak-
ing the circulation equal to zero at both tips. In
uniform shear flow, however, this requirement
is given by

since l( dy) is always equal to zero. When the
integral equation (23) is solved under the condi-
tion given in Eq. (30), we get the aerodynamic
forces acting on the wing quantitatively. In the
next chapter, the equation will be solved in the
form of a Fourier series.

-4, 'The solution of the integral equation

and the aerodynamic forces

In the present chapter, we shall try to solve
the integral equation by making a variable change.
Furthermore, the integral equation for the opti-
mum wing will be solved, and its characteristics
will be calculated.

The form of the integral equation (23) resem-

‘bles the Prandtl’s integral equation in potential

flow. Hence, I'(y) will be expressed in the form
of a Fourier series, if the suitable variable change
is made. Here, the following new variables ¢
and @, and the dimensionless value A are intro-
duced.

y=docosP, N=docosf, ['(M)=1"(0), c=2Ado

When such variables are changed, the integral
equations (23) and Eq. (30) become
¢ d A
f (2+ cos 0)%d6+ Lobx (D) [—JL"”S

x 1 ar 1 =4I’
X£ cosf—cosP df 8+7r . do

cosP— cos f

1
x log| <57 2% ’da} == Kdoboro
X (A4 cosPIx(PIax(P) -woereverereneeennnn (32)
4fx(l+ cos 0)%,10:0 ........................... (33)
where o
_ Ebo
#="g4,
b
ba(P) =—"2 (¢) ....................................... (34)
*(95) = a(¢)
bo : the chord length at y=0 ($=r/2)
ao: the geometrical angle of attack
at y=0 ($=nr/2)
’ © cecereeneene (35)

The dimensionless .value A=c/do is larger than
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unity, because the zero-velocity point of free flow is not on the surface of the wing.
We shall solve the above integral equation supposing that the solution /7(#) will be expressed in a
Fourier series. Because dF/dﬁ is required to satisfy Eq. (33), we can Wr1te dl'/df as
4ar
£ reb A COS T v vttt et e et aanas
a6 =2 [ °a02+ cos 02 Z acosnf - . : : (36)

where the coefficients A, As, ---are all independent of each other. Substituting d/"/d@ given in Eq. (36)
into Eq. (32), we obtain the algebraic equality

;::‘i An[ s n¢+ﬂob*(¢)Gn(¢)} <1+22g1°f ?;‘" i B (DY @s(B) v veveeevereeeenranieneaeeeeeeie e, 37
where :

Gﬂ(¢)=~§i§1ﬁ’%+Hﬂ(¢> —QE ( “) e e, (38)
; a=1—VE—1 L ) T (39)
and, H.(®) and Q’n are

Hn<¢>_ Z_C’?Sc;‘lﬁa log | cosp— cos 9]d4, Qn=i Oﬂz—_clf)i—;% log (A4 COSG)AO  +ovrvrenrenens (40)

H.($) and Q. are calculated by the following reduction formulae,

Ho D+ B Has$) =" (a=1,23,.)

Hy($)= 1_a2 [log (14-2acosP+a2)— 1og2] ) eeeerreeieiei e (41)
Hy($)=— zéj_(_l;)[]og(1+2acos¢+a2)— o 2|

Qo+t Qui=— "2 (a=1,2,3, )

Q=7"[2log(1—aD—log2a] Be (42)
Qi=— i“ [ 1og (1—a®)— N IogZa}

When we want to obtain A, from Eq. (37), only numerical calcu]atlon is available. The method
of numerical procedure will be shown later. )

The aerodynamic forces are presented in terms of A,:
(i) The spanwise lift distribution

An
l(y)='—‘PKK262boa0 Z ~, Sin n¢ where, ¢=cos—1<di> ................................................... (43)
0
(ii) The total lift force
L='4—p/Cchzd0b0a0A1"‘""”"'"'"""""""""""""’”‘“"""’”'""'""""“"""""‘f ............ e eeeieaen (44)

(iii) The induced drag

Di=31[2—Px2K2c2b02a02( 1"?‘;2) [2 %{Z (—a)im-7i 4 } {mf;l(—a)mAm}zIOg (%__IH TR (45)

The induced drag, which is rather complex in

1.5 — 4 form, becomes the same expression as that given
3 by the potential theory, when we put a—0 (1/2
—0) with Kc kept constant U,, say
1.0 §, % Di=£PK2U02b02aoz 5‘: A?
" 32 r=1
1 Dividing the total lift force and the induced drag
05~ 12 by 1/2pK?%*Sw(Sw is wing area), we have the lift
coefficient and the drag coefficient: '
' 1 | (iv) The lift coefficient :
0 02 04 0.6 0.8 Vi, 1.0 CL:2/zo/RdoA1------------‘-"~‘~'~' ....................... (46)

Fig. 3 Curves of f1, f2 and f3 (v) The induced drag coefficient
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ey AP BRCOls : J 1og (1)
L 2 ) Im=7] — )™ Bl I T N
oni=npi a1 75 ) [£ o manf + £ omad s (55-) )
where AR is the aspect ratio. ‘
4do
G T (48)

The integral equation (29) for the optimum wing becomes as follows, when the vamables in Eq.
(31) are changed.

A+ cos@ 7 1 ir’ & 1 rdr cos¢—cos6‘ _ . .
_ 2 o cosf—cos® d@ df— 21 dg log A+ cos @ dﬁ_f]m)Kdo (A oS @) revernssee (49
I'(6) will also be given in the same form as the former one, because ['(#) should satisfy Eq. (33).
ar
a0 2 choaox_'_ 05 2 Z A, cosnf (50)
Substituting Eq. (50) into Eq. (49), we get
_ thae 2 _2acosPat)t e,
Ao nglAﬂGn@S)— 2(14+a?)? Gy

where G,(9) is the same function as given in Eq. (38). The form of this equation is similar to that
of the equation derived by the present author in his previous paper®, and A, has been calculated
analytically; A, of more than fourth order are all equal to zero, and A;, A: and A; are

Ai=— /ic;(:)f, Kp—— i‘;; Y K= ;’“0 For RymRgm om0 evereerereeeeneereeeene. (52)
where fi1, f: and f; are
fi= (1—a®)(1+a?)3—4a*loga ]
U (=a)1+a)—2a*(1+4*) loga U e et (53)
_ 3a(1—a*)(1+a*)—4atloga 24
fe= (1—a?)(1+a?)*—24a%*(14+a*) loga ’ fs_(l—l—az)z i

The curves of fi, f:, f5 are shown in Fig. 3.

The induced angle of attack Jao can be determined by the requirement that ['(¢) should satisfy
Eq. (37). Substituting Eq. (51) into Eq. (37), we can get

das_ to(lt2acosdtaybu(Pan(®) . (54)
: .
o (1+a?)? Zl%sin 1P+ po(142a cos P+a2)2b,($)
e
Since Jao is constant along the wing span, the Finally, the aerodynamic forces acting on the
right hand side of Eq. (564) should be constant optimum wing are:
for every value of ¢. When we put ¢=7r/2(y=0) - (i) The spanwise lift distribution
in Eq. (54)) Aa’o is ~ 1 K
7 ) L] Y, D —
Aao R L (55) (y) 2p ¢ 000 /10+f1—1/3f3
24} ’ 3
(fl—_fa) X 2 %sin A ceen(58)
Accordingly, A, Az, and A; are h n=t -
1 1 7 where
A1 =— ’ y
i, 1. = cos‘l(——)
Fo 1+E(f1—'3—fa) ¢ do
o1 fo (ii) ‘The total lift force
Ap=— ~ Kf
Lo 1 1 .y U e (56) =" 0K%bodoct L . 59
4 (g g —(1/3)s (59
1 fo (iii) The induced drag
A3=170 1 1 D~'=£PK262bodo/!oaoz £h "’(60)
/ 1+Z>(f‘"?f3) = (ot Fim (1/3313)2
The relation between the optimum wing planform In. the present case,'Eq.Ah(GO) can be egsily ob-
b«($) and its aerodynamic twist a«($) is given tained because D; is given by the expression
from Egs. (54) and (55), as —AdaoL. Of course, from Eq. (45) we can get
- 3 fn . the same expression as given in Eq. (60).
b () (14-a2)2 Z,,?;“l;sm np When we put a—0 (or 1/2—0) in thése equa-
(@) =

tions, all the results become coincident with
+7¢0(f ‘_?f 3”“*(@_1 those given by the lifting line theory in potential
S TTTIRE PR (B flow. For instance, the planform of the non-

(14-2a cos p+a%)? [1
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twisted wing and its lift distribution become both
elliptic.

bx($)=sin @ l
(a—>0: {{C_’UOy fl_>lv f2’ f3_-)0) ......... (61)
T(fb) = ‘é‘PUozboaoT_:*‘uO sin @ J

5. Discussions about the wing
" characteristics

In the present chapter, the characteristics of
the rectangular wings and of the wing with the
minimum induced drag will be presented and
discussed.

In the first place, the numerical method of
calculating the Fourier coefficients [Eq. (37)] will
be stated briefly. In the present investigation,
the Glauert’s method is adopted; the coefficients
A. are determined approximately by solving the
following system of algebraic equations, suppos-
ing that A, of more than Nth order are negligibly

small.
sin n¢z

S A SR (BOGa(BD)
= nL o HO* f n zj

. 232
= (e con e Gan9)

' (6=1,2,3, -, N) creeverreeeemmnnaeniinnnnnan, (62)
where ¢;(i=1,2,---, N) are N distinct values of
P(0<P=r), corresponding to N points along the
span of .the wing. The coefficients A, are ob-
tainable with fairly good accuracy when we put
N=10. .

In Fig. 4 we illustrate the spanwise lift distri-
bution patterns of the rectangular wing whose
aspect ratio AR is equal to 6.0. The parameter
is the dimensionless velocity gradient 1/2 of the
on-coming free stream: According ds 1/4 tends
to unity, i.e. the on-coming free flow velocity
toward the starbord side of the wing becomes

2.0 B
d: AR=6.0
TS S5
SN N
e & /S
0.4
1.0 — 0.2
0
0.5 |
0 - P L | ,
-1.0 ~05 0 - 05y, 10

Fig. 4 The spanwise lift distributions of a rec-
tangular wing (the constant aspect ratio)

gradually larger, the local lift force acting on that

~ side of the wing is getting larger a‘nd larger,

whereas we have a symmetrical lift distribution
in the case of 1/4=0 (potential flow).

1Y)
TP Koo
)
o

—_
[@a]

0.5

0 g |
-1.0 -0.5 0

05 %/4, 10
Fig. 5 The spanwise lift distributions of a rec-

tangular wing obtained by the ‘‘quasi-
patential theory”

AR=6.0 :A-rectangular wing

4.5

4.0 | l I |
0 0.2 0.4 0.6 0.8 1A 1.0

Fig. 6 The lift coefficients of a rectangular wing
obtained by the present theory and the
‘‘quasi-potential theory” :

copl—— L 0 111
0- .02 04 06 08y 10

... .. Fig. 7 The curves of Cr versus 1/A
. (a rectangular wing)
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Now, we shall compare the wing character-
istics presented in the present theory with those
which are calculated approximately in the follow-
ing ‘“ quasi-potential theory ”: we can .easily cal-
culate the local lift force of a wing in uniform
flow whose velocity is U,. Then, we assume
that the local lift force acting at a station y in

uniform shear flow is equal to that acting at the

station ¥ in uniform flow, if the local velocity
U(y) of the flow coming to the station v is equal

to Up. When such an approximation is made,
we have
2 o
,@:prmzboao(l +LS¢) 5
2 Z n=1
(D)
X A" sin n¢ .................................... (63)

where A, are the coefficients of the Fourier
series for the wing which is placed in uniform
flow.

The lift distributions of the rectangular wing
which are calculated by using Eq. (63) are shown
in Fig. 5.
an approximate method are acceptable, when 1/
is small. However, when 1/1 becomes large, the
lift distributions given by the ‘ quasi-potential
theory ” become large compared with those pre-
dicted by the present theory.

Figure 6 shows the relation between the lift

o
I

Ly
P K Kb,

1
2

0 et | | !
-1.0 -0.5 0 05 ¥4, 10

Fig. 8 The spanwise lift distributions of a
rectangular wing (constant 1/2)

[ . ] ] I

The lift distributions given by such

coefficient Cr calculated by the present theory
and that given by the quasi-potential theory.

According as 1/2 increases, Cr given by the
present theory, at first, decreases and next in-
creases, whereas the other increases monotoni-
cally.

The curve of Cr changes in accordance with
the aspect ratio. In Fig. 7 we illustrate the lift
coefficients of the rectangular wing. Here, Cro
denotes the lift coefficient of the wing which is.
placed in uniform flow. From this it follows that
the decreasing rate of C. becomes small accord-
ing as AR becomes large. :

In Fig. 8 the patterns of the lift distribution
are shown for several aspect-ratios. When the
aspect ratio R increases, the maximum value of
the local lift force I(y) is getting larger and
larger, and, at the same time, the location at
which the maximum local lift force acts moves
toward the tip.

In the next place, we shall show the lift
distribution and the planform of the optimum
wing, and discuss about them. Figure 9 shows
the variation of the optimum lift distributions
with 1/4. The case of 1/4=0 coincides with that
of potential flow, and the lift distribution is el-"
liptic. - Naturally, when 1/1 increases, the lift
distribution patterns become axisymmetric. The
optimum wing planform also changes with 1/4.

n

)
TPEKC b,
o

Fig. 9 The spanwise lift distributions of the
optimum wing
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The planforms of the untwisted wing [ax($)=1]
are illustrated in Fig. 10 for several values of
1/2. Here, only upper half of the wing planforms
is shown. The wing planforms for 1/2=0 and
for 1/2=1 are both elliptic: when the zero-velocity
point of uniform shear flow comes from infinity
to the wing tip, the wing planform gradually
changes its shape from an ellipse, and when that
point comes infinitely close to the wing tip, the
planform again changes into an ellipse.

The above-mentioned are several numerical
examples of the present lifting line theory for a
wing in uniform shear flow.

6. Conclusions

The characteristics of a finite large aspect-
ratio wing in uniform shear flow with the velocity
varying in the spanwise direction have been
analized by the singularity method which is dif-
ferent from that adopted by von KArman and
Tsien.

As the result, the spanwise lift distributions
of the wing with an arbitrary planform can be
expressed in the form of a Fourier series, whose
coefficients are easily obtainable by solving a
system of algebraic equations numerically. Ac-
cordingly, the aerodynamic forces such as the
total lift L, the. induced drag D;, etc. are all
calculated when we use those coefficients. The
wing characteristics are influenced by the para-
meter 1/4, which represents the dimensionless
velocity gradient of on-coming uniform shear
flow. The characteristics of the rectangular wing
are calculated and presented in Figs. 4, 6,7, and 8.

In the present investigation, the character-

istics of the wing with the minimum induced drag
are also analized. In such a special case, the
coefficients of the Fourier series can be given
without any numerical procedure, that is, all the
coefficients can be determined analytically. The
planforms and the lift distributions of the opti-
mum wing are influenced by the parameter 1/3,
and are shown in Figs 9 and 10.

. When the dimensionless free flow velocity
gradient 1/1 tends to zero, results given by the
present theory agree perfectly with those given
by the Prandtl’s lifting line theory in uniform
potential flow. By the present theory, the physical
meaning of difference between uniform shear flow
and uniform potential flow is clarified.

Acknowledgement

The present author would like to acknowledge
the kind instruction and interesting discussions
given by Dr. Ei-ichi Hori and Dr. Shingo Ishizawa
of Mechanical Engineering Research Laboratory,
Hitachi Ltd.

References

(1) Honda, M., Proc. Roy. Soc., Ser. A, Vol. 254, No.
1278 (1960), p. 372.

(2) Namba, M. and Asanuma, T., Bull. JSME, Vol.10,
No. 42 (1967), p. 920.

(3) Namba. M, and Asanuma, T., Trans. Japan Soc.
Mech. Engrs., Vol. 34, No. 258 (1968), p. 717.

(4) Tsien, H.S. Quart. Appl. Math., Vol. 1 (1943), p. 130.

(5) Sowyrda, A., Cornell Aeronaut. Lab., AI-1190-A-2
(1958).

(6) Jones, E.E, Z. Angew. Math. Mech., Bd. 37 (1957),
p. 362.

(7) Jones, R.T., NACA TR., No. 855 (1946).

(8) Morita, K., Bull. JSME, Vol. 13, No. 57 (1970), p
362.

(9) Von Karman, Th. and Tsien, H.S., Quart. Appl.
Math., Vol. 3, No. 1 (1945), p. 1.

Discussions

Y. Sucivama (Nagoya University):

(1) In the present investigation, I'(y) is
acquired by calculating A, from a system of al-
gebraic equations (62) for given b(y). When a
new b(y) is re-calculated from Eq. (23) by using
I'(y) which is thus obtained, the new b(y) is
regarded to be a little different from the given
one. Show us the re-calculated 5(y) for different
free flow velocity gradients K [b(y) may be smaller
than the given one near the wing tips].

(2) In potential flow, the circulation I” or
the local lift force.!(y) should be zero at both
wing tips. In uniform shear flow, we have

dF(’?)

1) = f ven-2LD 4y o,

- f ron "UC’” AUCD 4y U)W

- f - "U(’” D49, [(—d)=0]
from Eq. (16). When we notice 7(do) =0, I(do) is
Kad=—K [Ty W=KG+o)]

Since 1(do)=0, the wing has the negative circula-
tion. Is such a conclusion correct?
M. NamBa (Kyushu University):

(3) Even when the free flow is a shear flow,
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the theorem of Kutta-Joukowski is expressed as

I=pUWIW(y)
where [', denotes the wing circulation at each
station. In the lifting line theory, this expression
is assumed to be valid, and is applied instead of
the boundary condition on the wing surface.
Equation (22) is nothing but the Kutta-Joukowski
theorem. Therefore, it is doubtless that the ex-
pression I(y)=pU(y)I"(¥) is not valid, and, at the
same time, it is not proper to insist as if Eq.
(16) where the Kutta-Joukowski theorem.

The strength of the trailing vortices dl'/dy
is the sum of d['w/dy and [',/U-dU/dy: the
former denotes the spanwise increasing rate of
the wing circulation, and the latter the additional
vortices which are created in the wake due to
the interference effect between vorticity dU/dy
of free flow and the velocity discontinuity across
the wing surface. Therefore, it seems to have
little meaning that [, the integrated value of the
trailing vortices, is introduced as a fundamental
physical value. If the strength of the trailing
vortices d]"/dy were introduced as a fundamental
physical value, which is symbolized in terms of
T, for instance, the present investigation could
be easily understood.

T. NisHivama (Tohoku University):

(4) 1In the present investigation, the author
often states, “ when 1/4 tends to zero, the results
agree perfectly with those given by the theory
in potential flow”. However, this statement
does not verify that the results are general and
proper, because in the lifting line theory, it is
assumed that the local wing characteristics are
similar to those of a two-dimensional wing
worked at the induced angle af attack a..

(i) The present theoretical investigation
has little significance, unless in shear flow the
above assumption is proved reasonable for a large
aspect-ratio wing.

(ii) In the lifting line theory, the three-
dimensional characteristics of a wing are taken
into consideration only in the effective angle of
attack. Therefore, in regard to the ‘lift curve
slope 9Cr/0a, we should use not the value of a
two-dimensional wing in potential flow, but that
of a wing with infinite span in shear flow whose
velocity varies linearly in the spanwise direction.

We can find little significance in the present
theory, unless how to obtain this value is clarified.

(5) Although, in the present paper, we find
the expression “ by the analogical inference from
the potential theory-:-”, the author should not
use such an expression without examining that
such an inference is reasonable and correct even

in shear flow.

(i) The author’s expression that [7(%) in
Eq. (12) is “corresponding to the circulation of
the wing in potential flow” is ambiguous in
physical sense, and hence, the following value
which possesses a clear physic¢al meaning should
be introduced; from Eq. (3), we have

0., _ 19, __
U(y)ax(m ”“)+pay("+ p_)=0

Integrating this equation with respect to z

_1 0
U(y)(v+—v_)—p oy
_1 0
x f (p-—p.)ds= 2 LW)
that is,
1
PT=T000) By PR

L(y) represents the local lift force and possesses
a clear physical meamng
df' 1
a0y )
(ii) Equation (12) is obtainable by the
following analytical procedure: by the Green’s.
formula, we obtam

oz, 9, )= fdsf 0u— v)—( =)an

R=(z—&)*+(y— 77)2+22
Assuming that the wing is thin, we have

9. 0

on 0z
Differentiating with respect to z and integrating:
with respect to &, v is written.

1
‘v(x,y,2)= 4ﬂf (v.— )m

x
x [1+ Vi (y—n)24-22 Jdr]

(6) In potential flow, the equations

09/02=0, Qu/0x=0
are both valid at far down stream. In shear flow,.
however, both equations can not be valid at the:
same time. This can be understood from Eq.
(2). This is one of the eminent properties of
shear flow. - The investigations hitherto done are
divided into the following two categories: one is
made on the basis of the assumption that gp/dx
=0 at far down stream, and the other on the:
assumption ou/9x=0. To which category does.
the present investigation belorig?

(7) The questioner wants to know the:
physical meaning of the conclusion that the op-
timum wing planform becomes elliptic, when 1/A.
is equal to unity, as well as when 1/1 is equal.
to zero.

(8) By the analitical method used in the:
present investigation, correctness of the assump-
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tion concerning the 1lift curve slope should be
verified.

(9) As for the lift curve slope of a wing
placed in uniform shear flow, that of the infinite
wing which is placed in.uniform shear flow should
be applied. The author is required to show how
to obtain it. .

(10) Is the present linearized theory not
contradictory to the fact that A has no limitation
(1/2=0~1)? The author should show the physi-
cal reason why the elliptic planform is optimum
when A is equal to unity, taking it into consider-
ation that the present theory is a linearized one.

(11) However, the questioner still deems it
to be correct theoretically (not in point of ac-
curacy) that concerning the lift curve slope, one
should use that of an infinite wing which is
placed in uniform shear flow. It is because the
author treats only the free shear flow with rather
small vorticity [K is small in Eq. (1)] that the
lift curve slope in uniform shear flow is proved
to be similar to that in potential flow. Therofore,
the author is required to clarify the limit of K,
considering the influence by the linearization of
the equations of motion especially when 2 is
nearly equal to unity.

Author’s closure

(1) The velocity gradient of free shear
flow is characterized by the dimensionless para-
meter 1/1. Accordingly, curves of b«(y), which
are calculated by the prescribed method, are
presented in Append-Fig. 1 for several 1/2. We
can find that these curves are nearly equal to
unity along the span except extremely near the
wing tip. When 1/2 is equal to unity, the ac-
curacy deteriorates a little near the left tip. The
author, however, thinks that this can be improved
by adopting a larger N. _

(2) In general, when the free flow is a uni-
form shear flow, ['(dys) which is the sum of the
trailing vortices is not equal to zero because of

1
7=0
1.2 =09
R (TN
=510 /A
e Y AN L=1-0//
508 =02 (N=8) 08
N\ =04 (N=8) ~ 067
0.6 #=0.6 (N=10)
»=0.8 (N=11)
0.4 #=1.0(N=11)
02
obt 1w
-1.0 ~08 -06 -04 -02 0 02 "04 06 08 1.0
y/do

Append.-Fig. 1 The re-calculated planforms of a
* rectangular wing .

the interference effect between the trailing vor-
ticies and the vorticies of free flow, say

K[ POar=U@IT %0 [Kdn=0]

Therefore, wé can not draw such a conclusion
as the questioner points out.

(3) Equation (16) simply expresses the
relation between ['(y) and the spanwise lift
distribution I(y), and hence, does not correspond
to the Kutta-Joukowski theorem. At the same
time, the author should like to add that Eq. (22)
is neither the Kutta-Joukowski theorem, because
it implies that the local lift force I(y) is simply
proportional to the dynamic pressure 1/200U2(y),
to the chord length b(y) and to the lift coefficient
ra. (as for the lift coéfficient, we can use either
the experimental value or the value given by the
two-dimensional wing theory).

As the questioner has pointed out, this in-
vestigation should be understood more easily, if
the strength of the trailing vortices were intro-
duced as a fundamental physical value.

(4) The present author regards it as more
convenient to answer the question (ii) first.

(ii) Exactly speaking, the author thinks
that the lift curve slope of a wing in potential
flow is not applicable to a wing in shear flow.

Honda‘® has analized the characteristics of
the wing between parallel walls, toward which
the fluid flows with a spanwise non-uniform velo-
city distribution, and has obtained the following
expression in the case that the span is large
compared with the chord length. :

"1 { We

1) =0 {at5 ()]

From this -equation, it is concluded that the lift
curve slope dCr/da is equal to 2z, which is
equivalent to that of a wing in potential flow.
Although the Honda’s theoretical model is diffe-
rent from the present one, no essential difference
does exist between these two, because in the
lifting line theory, three-dimensional properties
of a wing are concentrated in the term wew.

)

0.25 1
= i 2708 R=4.0
<|g0.20}-

(

= 6-0
< 015 8.0

0.10

Ta (3)
1A (XKcb

0.05F
)-SR SO T NN EN SN S N
710 09 06 04 -02 0 02 04 05,08 10

]

Append.-Fig. 2. The dimensionless circulations of
a rectangular wing for several
aspect ratios . :
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(i) We can write I(y) given in Eq. (16) as
I(y)=pU (y)]“’a(y)

where

)= f veniL-

As Dr. Namba pomted out, I, denotes the cir-
culation of the wing element. In the lifting line
theory, we adopt the Kutta-Joukowski theorem
supposing that the spanwise increasing rate of
I"«(%) is small. Therefore, the spanwise increas-
ing rate of ['. influences strongly upon the
accuracy of the lifting line theory. The curves

Fa, bO
(l/Z)IEKCboao( 2do
the present theory are illustrated in Append.-Fig.
2 (the dimensionless circulation is multiplied by
bo/2d, in order to make easy comparison between
the curves for wings with different aspect ratios).
This figure shows that the increasing rate of [,
becomes smaller according as the aspect ratio
becomes larger. Accordingly, for a large aspect
ratio wing, the same kind of assumption as that
adopted in potential flow is reasonable.

(5) (i) As for the fundamental physical
value, it was better to introduce 9L/dy [or I1(y)),
or d]'/dy which Dr. Namba suggested, since ]’
possesses little physical meaning.

(ii) Certainly, the author made a vague
statement. Equation (12) was, however, obtained
by the doublet distributed on the sheet of the
trailing vortex. It should be explained clearly.

(6) If we want to develop a precise theory,
it will be necessary to assume that either 9»/0%
or gu/oz is put to be zero at far down stream.
However, since the present investigation is made
assuming that the trailing vortex flows away to
infinity parallel to the z-axis, p is given in Eq.
(13). As the result, in the present theory /0=
=0 is assumed at infinity.

(7) In a certain sense, the uniform shear
flow is regarded to possess the nature of a poten-
tial flow, because the perturbation velocity »
satisfies the Laplace’s equation. This can be
‘also clarified by the fact that the shape of the
spanwise lift distribution is very similar to that
given by the “ quasi-potential theory ”: when we
represent the lift distribution of a wing in uni-
form flow in l(y), the lift distribution I(y) of
the wing in uniform shear flow is written ap-
proximately

of ) which are calculated by

I =kU2(lo(y) kot constante.--eeee- (i)
On the other hand, form Eq. (22) I(y) of the
optimum wing is

Wy = klU'-’(y)b(y) ki constante--c-c--eee (ii)
since a. is constant along the wing span. Com-
paring Eq. (i) with Eq. (ii), the optimum wing
planform is given as follows independently of 1/A.

b(y)~Ilo(y)=ksVd*—y® kst constant------ (iii)
However, as for the reason why the optimum
wing planform agrees perfectly with an ellipse
when A is equal to unity, the author can not
clarify it. Possibly, it may be caused by the
properties of flow itself, or by the linearization
of the Euler’s equation (in the case of A=1, the

' free flow velocity is very small near the left tip

of the wing).

(8) 1In order to solve this problem, we try
to analize the wing characteristics using the
concept "of the *lifting surface”, and, in the
next place, simplify the result assuming that
the aspect ratio is large,

Now, we put

dvCa,y,)=v,—v_, Ap(x,y)=p_—Dp, - 3(v)
where subscripts “ 4+ ” and “ — " are affixed to
vat z—+0 and at z——0, respectively. As prof.
Nishiyama pointed out in the previous discussion,
we have the following relation between Jv and A4p

4o(a, 9) = pU@ - f 4pCa, v)ds]

Since the pressure p has discontinuity only across
the wing surface, we obtain Jv(x, ) in the region
z>b/2 (or in the wake).

4o, =10(50) =555,
" 1 @ .
X [j:b/zdp(x, y)dx} = oGy g (vi)

Because v satisfies the Laplace’s equation, and
further, it has discontinuity both across the wing
and across the wake, we can obtain v by the
doublet 4v distributed continuously in that region.

v(x,y,2)=- AL(RE:;EC{&M ............... (vii)
where,

RP=(2—&)*+(y—n)2+2?
Integration region S is the wing surface and the
wake region. When we notice that Av(&, %) is a
function of 7 only in the wake region (£>b/2,
—do=7=do), we get w by substituting Eq. (vii)
into Eq. (11).

1 o 94y _ _ —7
w(z,y,2)= 47rf_ f S K (2, y, 26, )dE f Av 77 Cy— ,7) T e 47

b2 0§

2+22

b (y—m+22
METTORS) fmd” "2'7’) log |~ e rmyry a2

7 G N (viii)

v_vhere,
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. - x—§& y—=7 22y 1 x—& _ .
K38 D= 0 o e (R 7 )~ e Gmoyiga R 1
_ z—& Io R—I-’l’_él Rc+lx—§| ..................... (ix)
2y +o)a—E| °F| R lo—&| Re—|o—¢| J
R2=(2—&)"+(c+M2+22

Since Av(b/2,7) denotes the vorticity in the wake, the second and the third term of the left hand side
of Eq. (viii) represent the induced velocity caused by the trailing vortex. If the wing surface is expressed
by z.(z,¥), the boundary condition on the wing surface is '

W(E, Y, 0) U (Y)(020/BL) ++rerrremrerererreeretee e et ittt ettt s (x)
From Eqs (viii) and (x) we get the integral equation for the “lifting surface”
oz L ads
U == K
@3 o\ PTGy ) o003, M
1 L a7 1 o 1 dl y=7 _
i <PU(’7> d77) y—7 ' 8x(y+e) PuCD) d’})log oy (P (=)

This is the fundamental equation for the lifting surface theory in uniform shear flow.

When the wing span 2d, is very large compared with the chord length-5(y), the following approxi-
mation is possible.

(e—&)+(y—n)2=(y—7)3, Gt R S O a7 L= - o/ T LR TATERE (xii)
Then, Eq. (xi) is simplified as
1 (o2 4e(€,y) . 8za wi(y)
or o x—g df pU( )[ + U<y) :| ..................................................................... <x111)
where,
1 (e 1 1 d /2 P ;
wan=—i [ o T oo an) T g oo |97 e

Multiplying both sides of Eq. (xiii) by V' (8/2+x)/(b/2—=), and integrating it from z=—b/2 to z=15/2,
Eq. (xiii) yields

l(y)——pUz(y)bf \/1+x* a'j: *+7er2(y)b(u[);((y;) ......................................................... (xv)

The first term of theé right hand side of Eq. (xv)
is equal to the lift force acting on a two-dimen-
sional wing in potential flow. When a wing is
thin and, at the same time, the geometrical angle
of attack « is measured from zero-lift attitude,

the first term yields npU%(y)ba(y). Therefore,
Eq. (xv) becomes

2 wi¥ ] i

1) =pU* ()] (o) + ot ] (xcvi)

From this equation, we can conclude that the
assumption concerning the effective angle of at-
tack is reasonable even in uniform shear flow.

(9) From Eq. (xvi) we can also conclude
that the lift curve slope of the wing whose aspect
ratio is large enough to neglect the higher order
of R? is equal to 27, which coinncides with that
of a two-dimensional wing in potential flow. Of
course, because Eq. (xvi) is valid even for a wing
with the infinite span, the lift curve slope of that
wing is equal to 27 as well.

(10) Concerning this problem, the author
answered in the previous paper [Bull. JSME, Vol.

13, No. 57 (1970), p. 362], and he will not explain

it in detail here.
According as A approaches unity, singularity

. . . d
. sionless vorticity @—[
E 3

(v/U)y-_. (v/U becomes infinite on the region y

=-—¢) comes infinitely close to the wing tip.
Therefore, accuracy of the results seems to
deteriorate, and the optimum wing planform may
not be elliptic when A is equal to unity. How-
ever, the author thinks that the optimum wing
planform is very similar to an ellipse, because
this singularity gives little influence upon the
whole flow field as mentioned in the previous
paper.

(11) 1In general, it is not K, but the follow-
ing non-dimensional value that characterizes the
flow field essentially. Now, let the velocity Ke¢
be the representative velocity and the semi-span
do be the representative length. Then, the free
flow velocity U(y) given in Eq. (1) can be writ-
ten in the- form,

U(y*>:Uo.(1+'yi>, (y*=i, U0=KC)'
A do’ -
Accordingly, the value that governs the flow field
is not the vorticity K(=dU/dy) but the dimen-
Uy } _1
Uo 2’
the same time, there is no limitation in vorticity

and, at

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

Vol. 14, No..72, 1971

Lifting Line Theory of a Wing in Uniform Shear Flow 563

K itself.

When we set up the equation for the “ lifting
line ”’, we made only the approximation that the
aspect ratio was large, and got the conclusion
that 9CL/0a was equal to 2r independently of A.
Furthermore, since correctness of linearization
of the equation has been proved in the author’s
previous paper, there is no value on which we

are required to impose restrictions.

With regard to the accuracy of the present
lifting line theory, it would be difficult to give
any quantitative ‘answer, unless precise investiga-
tion is made. However, from the stand point of
engineering, the author regards the present
theory as applicable.
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