

INTERNATIONAL TOWING TANK CONFERENCE

ITTC Symbols and Terminology List

Alphabetic

Version 2011

September 2011

Supersedes all previous versions

Updated by the $\mathbf{2 6}^{\text {th }}$ ITTC Quality Systems Group

Version				A, a
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
A	MS	(fundamental, statistical, stochastic) Average, sample mean		
A	AP	(fluid mechanics, lifting surfaces) Projected area	$b c_{m}$	m^{2}
A	A, AR, AREA	(ships, basic quantities) Area in general		m^{2}
A		(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Assumed centre of gravity above keel used for cross curves of stability		1
A_{0}	A0	(ships, propulsor performance, propulsor geometry) Propeller disc area	$\pi D^{2} / 4$	m^{2}
A_{6}		(ships, propulsor geometry, water jets) Nozzle discharge area		m^{2}
$\overline{A B}$	XAB	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitudinal centre of buoyancy from aft perpendicular	Distance of centre of buoyancy from aft perpendicular	m
$A_{\text {BL }}$	ABL	(ships, hull geometry) Area of bulbous bow in longitudinal plane	The area of the ram projected on the middle line plane forward of the fore perpendicular	m^{2}
$A_{\text {BT }}$	ABT	(ships, hull geometry) Area of transverse cross-section of a bulbous bow (full area port and star-board)	The cross sectional area at the fore perpendicular. Where the water lines are rounded so as to terminate on the forward perpendicular A_{BT} is measured by continuing the area curve forward to the perpendicular, ignoring the final rounding;	m^{2}
$A_{\text {c }}$	AC	(ships, appendage geometry) Area under cut-up		m^{2}

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$A_{\text {c }}$	CUA	(ACV and SES) Cushion area	Projected area of ACV or SES cushion on water surface	m^{2}
$A_{\text {C }}$		(seakeeping, large amplitude motions capsizing) Area of deck available to crew		m^{2}
$A_{\text {D }}$	AD	(ships, propulsor geometry) Developed blade area	Developed blade area of a screw propeller outside the boss or hub	m^{2}
$A_{\text {den }}$	ADEN	(ships, propulsor geometry) Duct entry area		m^{2}
$A_{\text {dex }}$	ADEX	(ships, propulsor geometry) Duct exit area		m^{2}
$A_{\text {E }}$	AE	(ships, propulsor geometry) Expanded blade area	Expanded blade area of a screw propeller outside the boss or hub	m^{2}
$\overline{A F}$	XAF	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Distance of the centre of flotation from aft perpendicular		m
$A_{\text {F }}$	AFO	(hydrofoil boats) Foil area (general)	Foil area in horizontal plane	m^{2}
$A_{\text {FB }}$	AFB, AFB0	(ships, appendage geometry, ships, manoeuvrability) Projected area of bow fins		m^{2}
$A_{\text {FE }}$	AFE	(hydrofoil boats) Emerged area of foil		m^{2}
$A_{\text {FF }}$	ASFF	(hydrofoil boats) Submerged area of front foil		m^{2}
$A_{\text {FR }}$	AFR	(ships, appendage geometry) Frontal area	Projected frontal area of an appendage	m^{2}
$A_{\text {FS }}$	AFS, AFST	(ships, appendage geometry, seakeeping) Projected area of stern fins		m^{2}
$A_{\text {FS }}$	AFS	(hydrofoil boats) Submerged foil area		m^{2}

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-
		Unit	

$A_{\text {FST0 }}$	AFSTO	(hydrofoil boats) Submerged foil plan area at take-off speed		m^{2}
$A_{\text {FT }}$	AFT	(hydrofoil boats) Total foil plan area		m^{2}
$\overline{A G}_{\text {L }}$	XAG	(seakeeping, large amplitude motions capsizing) Longitudinal centre of gravity from aft perpendicular	Distance of centre of gravity from aft perpendicular	m
$\overline{A G}_{\text {T }}$	YAG	(seakeeping, large amplitude motions capsizing) Transverse distance from assumed centre of gravity A, to actual centre of gravity G		m
$\overline{A G}_{V}$	ZAG	(seakeeping, large amplitude motions capsizing) Vertical distance from assumed centre of gravity A, to actual centre of gravity G		m
$A_{\text {HL }}$	AHLT	(ships, manoeuvrability) Lateral area of the hull	The area of the profile of the underwater hull of a ship when projected normally upon the longitudinal centre plane	m^{2}
$A_{\text {I }}$	AIA	(multi-hull vessels) Struthull intersection area		m^{2}
$A_{i j}$	AM(I,J)	(solid body mechanics, inertial and hydro properties) Added mass coefficient in $i t h$ mode due to j th motion		1
$A_{\text {J }}$	ASJ	(sailing vessels) Area of jib or genoa		m^{2}
$A_{\text {LK }}$	ALK	(sailing vessels) Lateral area of keel		m^{2}
$A_{\text {LT }}$	ALT	(sailing vessels) Total lateral area of yacht		m^{2}

ITTC	Computer	Name	Definition or
Symbol	Symbol		Explanation

A_{LV}	AHLV	(ships, manoeuvrability, seakeeping, large amplitude motions capsizing)) Lateral area of hull above water	m^{2}
A_{M}	AM	(ships, hull geometry) Area of midship section	Midway between fore and aft perpendiculars
A_{m}	ASM	(sailing vessels) Area of mainsail	m^{2}
A_{N}	ASN	(sailing vessels) Normalized sail area (ships, propulsor geometry, water jets)Nozzle discharge area	m^{2}
A_{n}	AP	(ships, propulsor geometry) Projected blade area	Projected blade area of a screw propeller outside the boss or hub

$A_{\text {PB }}$	APB	Wetted Surface Area of Pod Main Body	m^{2}
$A_{\text {PBF }}$	APBF	Wetted Surface Area of Bottom Fin	m^{2}
$A_{\text {PS }}$	APS	Wetted Surface Area of Strut	m^{2}
$A_{\text {R }}$	ARU	(ships, manoeuvrability) Total lateral area of rudder	m^{2}
$A_{\text {RF }}$	AF	(ships, appendage geometry) Lateral area of rudder flap	m^{2}
$A_{\text {RL }}$		(seakeeping, large amplitude motions capsizing) Positive area under righting lever curve	m^{2}
$A_{\text {Rmov }}$	ARMV	(ships, manoeuvrability) Lateral area of the movable part of rudder	m^{2}
$A_{\text {RN }}$	ARNO	(ships, manoeuvrability) $\quad\left(A_{\mathrm{R}}+A_{\mathrm{Rmov}}\right) / 2$ Nominal lateral area of rudder	m^{2}

ITTC	Computer	Name	Definition or
Symbol	Symbol		Explanation

$A_{\text {RP }}$	ARP	(ships, appendage geometry)Lateral area of rudder in the propeller race		m^{2}
$A_{\text {RT }}$	ART	(ships, appendage geometry) Total lateral area of rudder	$A_{\mathrm{RX}}+A_{\text {Rmov }}$	m^{2}
$A_{\text {RX }}$	ARX	(ships, appendage geometry) Lateral area of the fixed part of rudder		m^{2}
$A_{\text {S }}$	AS	(seakeeping, large amplitude motions capsizing, sailing vessels) Sail area in general, Area of sails in profile according to ISO 8666	$(P E+I J) / 2$	m^{2}
A_{s}		(ships, propulsor geometry, water jets) Cross sectional area at station s		
$A_{\text {SFR }}$	ASFR	(hydrofoil boats) Submerged area of rear foil		m^{2}
$A_{\text {SI }}$	ASI	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Attained subdivision index		1
$A_{\text {SK }}$	ASK	(ships, appendage geometry) Projected skeg area		m^{2}
$A_{\text {SP }}$	ASSP	(sailing vessels) Area of spinnaker		m^{2}
$A_{\text {ss }}$	ASS	(hydrofoil boats) Submerged strut area		m^{2}
$A_{\text {T }}$	ATR	(ships, hull geometry) Area of transom (full area port and starboard)	Cross-sectional area of transom stern below the load waterline	m^{2}
A_{V}	AV	(ships, hull geometry seakeeping, large amplitude motions capsizing) Projected lateral area of the portion of the ship and deck cargo above the waterline (IMO/IS, IMO/HSC'2000) Area exposed to wind	Area of portion of ship above waterline projected normally to the direction of relative wind	m^{2}

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$A_{\text {W }}$	AW	(ships, hull geometry) Area of water-plane		m^{2}
$A_{\text {WA }}$	AWA	(ships, hull geometry) Area of water-plane aft of midship		m_{2}
$A_{\text {WF }}$	AWF	(ships, hull geometry) Area of water-plane forward of midship		m^{2}
A_{X}	AX	(ships, hull geometry) Area of maximum transverse section		m^{2}
$\overline{A Z}$	YAZ	(seakeeping, large amplitude motions, capsizing ships, hydrostatics, stability) Righting arm based on horizontal distance from assumed centre of gravity A, to Z	Generally tabulated in cross curves of stability	m
$A_{z \zeta}(\omega)$		(ships, seakeeping) Amplitude of frequency response function for translatory motions	$\begin{aligned} & z_{a}(\omega) / \zeta_{a}(\omega) \text { or } \\ & z_{a}(\omega) / \eta_{a}(\omega) \end{aligned}$	1
$A_{\theta ;}(\omega)$		(ships, seakeeping) Amplitude of frequency response function for rotary motions	$\begin{aligned} & \Theta_{a}(\omega) / \zeta_{a}(\omega) \text { or } \\ & \Theta_{a}(\omega) /\left(\omega^{2} /\left(g \zeta_{a}(\omega)\right)\right) \end{aligned}$	1
a, a^{1}	AC, A1	(ships, basic quantities) Linear or translatory acceleration	$d v / d t$	$\mathrm{m} / \mathrm{s}^{2}$
a	ADMP	(fundamental, time and frequency domain quantity) Damping	s^{r}, in Laplace variable	1/s
a	RAUG	(ships, performance) Resistance augment fraction	$\left(T-R_{\mathrm{T}}\right) / R_{\mathrm{T}}$	1

ITTC	Computer	Name	Definition or Explanation	SI-
Symbol	Symbol		Unit	

a	ATT	(ships, unsteady propeller forces) Cylindrical coordinates	Cylindrical system with origin O and longitudinal x-axis as defined before; angular a -(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, r distance measured from the x-axis
a		Half-width of a rectangular distribution	Half-width of a rectangular distribution of possible values of input quantity X_{i} : $a=\left(a_{+}-a_{-}\right) / 2$
$a_{\text {D }}$	ADR	(ships, propulsor geometry) Developed blade area ratio	A_{D} / A_{0}
a_{E}	ADE	(ships, propulsor geometry) Expanded blade area ratio	A_{E} / A_{0}
a_{i}	AT(I)	(ships, seakeeping) Attitudes of the floating system	$i=1,2$, 3, e.g. Euler angles of roll, pitch, and yaw, respectively
a_{P}	ADP	(ships, propulsor geometry) Projected blade area ratio	A_{P} / A_{0}
a_{+}		Upper bound	Upper bound, or upper limit, of input quantity X_{i} :
a_{-}		Lower bound	Lower bound, or lower limit, of input quantity X_{i} :

Version				B, b
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
B	B, BR	(ships, basic quantities, hull geometry) Breadth, Beam or breadth, moulded, of ships hull		m
B		(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Centre of buoyancy	Centroid of the underwater volume	
B_{B}	BB	(multi-hull vessels) Box beam	Beam of main deck	m
B_{C}	BCU	(ACV and SES) Cushion beam	SES cushion beam measured between the side walls	m
$B^{\text {C }}$	CIRCB	(ships, hull geometry) R.E. Froude's breadth coefficient	$B / \nabla^{1 / 3}$	1
$B_{C B}$		(seakeeping, large amplitude motions capsizing) Beam between centres of buoyancy of side hulls		
$B_{\text {FOA }}$	BFOA	(hydrofoil boats) Maximum vessel breadth including foils		
$B_{i j}$	DA(I,J)	(solid body mechanics, inertial and hydro properties) Damping coefficient in ith mode due to j th motion		
$B_{\text {LCG }}$	BLCG	(planing, semi-displacement vessels) Beam at longitudinal position of the centre of gravity	Breadth over spray strips measured at transverse section containing centre of gravity	
B_{M}	BM	(ships, hull geometry) Breadth, moulded of midship section at design water line		m
$\overline{B M}$	ZBM	(seakeeping, large amplitude motions capsizing) Transverse metacentre above centre of buoyancy	Distance from the centre of buoyancy B to transverse metacentre M $\overline{B M}=\frac{I_{\mathrm{T}}}{\nabla}=\overline{K M}-\overline{K B}$	m

Version				B, b
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
$B M_{L}$	ZBML	(seakeeping, large amplitude motions capsizing) Longitudinal metacentre above centre of buoyancy	$\overline{B M}_{L}=\overline{K M}_{L}-\overline{K B}$	m
Bu	BN	(fluid mechanics, flow parameter) Boussinesq number	$V /\left(g R_{\mathrm{H}}\right)^{1 / 2}$	1
B_{OA}	BOA	(sailing vessels) Beam, overall		m
B_{P}	BP	(ships, propulsor performance) Taylor's propeller coefficient based on delivered horsepower	$n P_{\mathrm{D}}{ }^{1 / 2} / V_{\mathrm{A}}{ }^{2.5}$ with n in revs $/ \mathrm{min}$, P_{D} in horsepower, and V_{A} in kn (obsolete)	1
$B_{\text {PA }}$	BPA	(planing, semi-displacement vessels) Mean breadth over chines	A_{P} / L_{P}	m
$B_{\text {PC }}$	BPC	(planing, semi-displacement vessels) Beam over chines	Beam over chines, excluding external spray strips	m
$B_{\text {PT }}$	BPT	(planing, semi-displacement vessels) Transom breadth	Breadth over chines at transom, excluding external spray strips	m
$B_{\text {PX }}$	BPX	(planing, semi-displacement vessels) Maximum breadth over chines	Maximum breadth over chines, excluding external spray strips	m
$B_{\text {S }}$	BS	(multi-hull vessels) Hull spacing	Distance between hull centre lines	m
$B_{\text {T }}$	BTR	(ships, hull geometry) Breadth, moulded of transom at design water line		m
$B_{\text {TV }}$	BTUN	(multi-hull vessels) Tunnel width	Minimal distance of the demihulls at the waterline	m
B_{U}	BU	(ships, propulsor performance) Taylor's propeller coefficient based on thrust horsepower	$n P_{\mathrm{T}}^{1 / 2} / V_{\mathrm{A}}{ }^{2.5}$ with n in revs $/ \mathrm{min}$, P_{T} in horsepower, and V_{A} in kn (obsolete)	1
$B_{\text {WL }}$	BWL	(ships, hull geometry) Maximum moulded breadth at design water line		m

ITTC Computer Name Definition or SI-
Symbol Symbol

$B_{\text {WLT }}$	BWLT	(ACV and SES) Total waterline breadth of SES	At the water line
B_{X}	BX	(ships, hull geometry) Breadth, moulded of maximum section area at design water line	
$\overline{B M}$	ZBM	(ships, hydrostatics, stability) Transverse metacentre above centre of buoyancy	Distance from the centre of buoyancy B to the transverse metacentre M. $\overline{B M}=I_{\mathrm{T}} / \nabla=\overline{K M}-\overline{K B}$
$\overline{B M}_{L}$	ZBML	(ships, hydrostatics, stability) Longitudinal metacentre above centre of buoyancy	$\overline{K M}_{L}-\overline{K B}^{\text {a }}$
b		(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Centre of flotation of added buoyancy layer or centre of lost buoyancy of the flooded volume	
b		(seakeeping, large amplitude motions capsizing) Maximum tank breadth	
b	B	(environmental mechanics, waves) Bandwidth of spectral resolution	Sampling frequency divided by the number of transform points
b	SP	(fluid mechanics, lifting surfaces) Wing or foil span	
$b_{\text {F }}$	BSPF	(fluid mechanics, lifting surfaces) Flap span	
$b_{\text {R }}$	SPRU	(ships, manoeuvrability) Rudder span	Maximum distance from root to tip
$b_{\text {RM }}$	SPRUME	(ships, manoeuvrability) Mean span of rudder	
$b_{\text {S }}$	BST	(hydrofoil boats) Span of struts	
$b_{\text {ST }}$	BSTT	(hydrofoil boats) Transverse horizontal distance of struts	

ITTC Symbols

Version 2011
B, b
ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit
b_{w} BSPW (hydrofoil boats) Foil span m wetted
b_{+}
Upper bound of the deviation Upper bound, or upper limit, of the deviation of input quantity X_{i} from its estimate $x_{i:} \quad b_{+}=a_{+}-x_{i}$
b_{-}
Lower bound of the deviation Lower bound, or lower limit, of the deviation of input quantity X_{i} from its estimate $x_{i:} \quad b_{-}=x_{i}-a_{-}$

Version				C, C
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
C	CR	(fundamental, statistical, stochastic) Population covariance		
C	FF(2)	(ships, basic quantities) Cross force	Force normal to lift and drag (forces)	N
C_{10}	C10M	(environmental mechanics, wind) Surface drag coefficient	$\left(0.08+0.065 U_{10}\right) 10^{-3}$	
$C_{\text {A }}$	CA	(ships, hull resistance) Incremental resistance coefficient for model ship correlation	$R_{\text {A }} /(S q)$	1
$C_{\text {AA }}$	CAA	(ships, hull resistance) Air or wind resistance coefficient	$R_{\mathrm{AA}} /\left(A_{\mathrm{V}} q_{\mathrm{R}}\right)$	1
$C_{\text {ADM }}$	CADM	(ships, performance) Admiralty coefficient	$\Delta^{2 / 3} V^{3} / P_{S}$	1
$C_{\text {AL }}$	CAHL	(ships, manoeuvrability) Coefficient of lateral area of ship	$A_{\text {HL }} /(L T)$	1
$C a$	CN	(fluid mechanics, flow parameter) Cauchy number	$V /(E / \rho)^{1 / 2}$	1
C_{B}	CB	(ships, hull geometry) Block coefficient	$\nabla /(L B T)$	1
$C_{\text {BFTC }}$	CBFTC	Thickness Cord Ratio of Bottom Fin		1
Cc	CC	(ships, basic quantities) Cross force coefficient	$C_{\mathrm{C}}=\frac{C}{q A}$	1
$C^{\text {C }}$	CIRCC	(ships, hull resistance) R.E. Froude's resistance coefficient	$1000 \mathrm{R} /\left(4\left(K^{\mathrm{C}}\right)^{2}\right)$	1
C_{D}	CDSE	(fluid mechanics, lifting surfaces) Section drag coefficient		1
C_{D}	CD	(ships, hull resistance) Drag coefficient	D / (Sq)	1

ITTC	Computer	Name	Definition or Symbol
Symbol		SI-	

C_{D}		(seakeeping, large amplitude motions capsizing) Crew density	Proportion of boat plan needed for crew	
$C_{\text {DF }}$	CDF	(hydrofoil boats) Drag coefficient of foil	$D_{\mathrm{F}} /\left(A_{\mathrm{FS}} q\right)$	1
$C_{\text {DI }}$	CDSI	(fluid mechanics, lifting surfaces) Section induced drag coefficient		1
$C_{\text {DI }}$	CDI	(hydrofoil boats) Induced drag coefficient	$D_{\mathrm{I}} /\left(A_{\mathrm{FS}} q\right)$	1
$C_{\text {DINT }}$	CDINT	(hydrofoil boats) Interference drag coefficient	$D_{\text {INT }} /\left(A_{\text {FS }} q\right)$	1
$C_{D 0}$	CD0	(hydrofoil boats) Section drag coefficient for angle of attack equal to zero	$D_{\mathrm{P}} /\left(A_{\mathrm{FS}} q\right)$	1
$C_{\text {DS }}$	CDSP	(hydrofoil boats) Spray drag coefficient	$D_{\mathrm{S}} /\left(A_{\mathrm{FS}} q\right)$	1
$C_{\text {DVENT }}$	CDVENT	(hydrofoil boats) Ventilation drag coefficient	$D_{\mathrm{V}} /\left(A_{\mathrm{FS}} q\right)$	1
$C_{D W}$	CDW	(hydrofoil boats) Wave drag coefficient	$D_{\mathrm{W}} /\left(A_{\mathrm{FS}} q\right)$	1
$C_{D V}$	CDVOL	(ships, performance) Power-displacement coefficient	$P_{\mathrm{D}} /\left(\rho V^{3} V^{2 / 3} / 2\right)$	1
$C_{\text {F }}$	CF	(ships, hull resistance) Frictional resistance coefficient of a body	$R_{\mathrm{F}} /(S q)$	1
$C_{\text {f }}$	CFL	(fluid mechanics, boundary layers) Skin friction coefficient	$\tau /\left(\rho U_{\mathrm{e}}^{2} / 2\right)$	1
$C_{\text {F0 }}$	CF0	(ships, hull resistance) Frictional resistance coefficient of a corresponding plate	$R_{\mathrm{F} 0} /(\mathrm{Sq})$	1

Version				C, C
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$C_{\text {FU }}$	CFU	(sailing vessels) Frictional resistance coefficient (upright)	$R_{\mathrm{FU}} /(S q)$	1
$C_{\text {GM }}$	CGM	Dimensionless $\overline{G M}$ coefficient	$\overline{G M} / \nabla^{1 / 3}$	1
$C_{\text {GZ }}$	CGZ	Dimensionless $\overline{G Z}$ coefficient	$\overline{G Z} / \nabla^{1 / 3}$	1
$C_{K G}$	CKG	Dimensionless $\overline{K G}$ coefficient	$\overline{K G} / T$	1
$C^{\text {H }}$		(seakeeping, large amplitude motions capsizing) Height coefficient, depending on the height above sea level of the structural member exposed to the wind		1
$C_{\text {I }}$		(sailing vessels) Induced resistance coefficient		1
$C_{\text {I }}$	CI	(ice going vessels) Coefficient of net ice resistance	$R_{\mathrm{I}} /\left(\rho_{\mathrm{I}} g h^{2} B\right)$	1
$C_{i j}$	RF(I,J)	(solid body mechanics, inertial and hydro properties) Restoring force coefficient in i th mode due to j th motion		
$C_{\text {IL }}$	CWIL	(ships, hull geometry) Coefficient of inertia of water plane, longitudinal	$12 \mathrm{I}_{\mathrm{L}} /\left(\mathrm{B} L^{3}\right)$	1
$C_{\text {IT }}$	CWIT	(ships, hull geometry) Coefficient of inertia of water plane, transverse	$12 I_{T} /\left(B^{3} L\right)$	1
$C_{\text {IW }}$	CIW	(ice going vessels) Coefficient of water resistance in the presence of ice	$R_{\text {IW }} /\left(S q_{\text {IW }}\right)$	1
C_{L}		(seakeeping, large amplitude motions capsizing) Crew limit	Maximum number of persons on board	

ITTC	Computer	Name	Definition or Symbol	Symbol

C_{L}	CLSE	(fluid mechanics, lifting surfaces) Section lift coefficient		1
$C_{L F}$	CLF	(hydrofoil boats) Foil lift coefficient	$L_{\mathrm{F}} /\left(A_{\text {FS }} q\right)$	1
$C_{L 0}$	CL0	(hydrofoil boats) Profile lift coefficient for angle of attack equal to zero	$L_{0} /\left(A_{\text {FS }} q\right)$	1
$C_{L 0}$	CLOD	(planing, semidisplacement vessels) Lift coefficient for zero deadrise	$\Delta /\left(B_{C G}{ }^{2} q\right)$	1
$C_{\text {LTO }}$	CLTO	(hydrofoil boats) Lift coefficient at take-off condition	$L_{\text {TO }} /\left(A_{\text {FS }} q\right)$	1
$C_{L X}$	CLA	(hydrofoil boats) Slope of lift curve	$d C_{L} / d \alpha$	1
$C_{L \beta}$	CLBET	(planing, semidisplacement vessels) Lift coefficient for dead rise surface	$\Delta /\left(B_{\mathrm{CG}}{ }^{2} q\right)$	1
C_{M}	CMSE	(fluid mechanics, lifting surfaces) Section moment coefficient		1
$C_{\text {M }}$	CMS	(ships, hull geometry) Midship section coefficient (midway between forward and aft perpendiculars)	$A_{\mathrm{M}} /(\mathrm{B} T)$	1
C_{M}	CM	(hydrofoil boats) Pitching moment coefficient	$M /\left(\left(A_{\mathrm{FF}}+A_{\mathrm{FR}}\right)\left(l_{\mathrm{F}}-l_{\mathrm{R}}\right) q\right)$	1
С $_{\text {MTL }}$	CMTL	Longitudinal trimming coefficient	Trimming moment divided by change in trim which approximately equals $\overline{B M}_{L} / L$	1
C_{N}	CN	(ships, performance) Trial correction for propeller rate of revolution at speed identity	$n_{\mathrm{T}} / n_{\text {S }}$	1

ITTC	Computer	Name	Definition or Symbol	Symbol

$C_{N P}$	CNP	(ships, performance) Trial correction for propeller rate of revolution at power identity	$P_{\text {DT }} / P_{\text {DS }}$	1
$C_{\text {P }}$	CPL	(ships, hull geometry) Longitudinal prismatic coefficient	$\nabla /\left(A_{\mathrm{X}} L\right)$ or $\nabla /\left(A_{\mathrm{M}} L\right)$	1
C_{P}	CDP	(ships, performance) Trial correction for delivered power		1
C_{P}	CPD	(ships, propulsor performance) Power loading coefficient	$P_{\mathrm{D}} /\left(A_{\mathrm{P}} q_{\mathrm{A}} V_{\mathrm{A}}\right)$	1
C_{p}	CP	(ships, hull resistance, water jets) Local pressure coefficient	$\left(p-p_{0}\right) /\left(\rho V^{2} / 2\right)$	1
$C_{\text {PA }}$	CPA	(ships, hull geometry) Prismatic coefficient, after body	$\begin{aligned} & \nabla_{\mathrm{A}} /\left(A_{\mathrm{X}} L / 2\right) \text { or } \\ & \nabla_{\mathrm{A}} /\left(A_{\mathrm{M}} L / 2\right) \end{aligned}$	1
$C_{\text {PE }}$	CPE	(ships, hull geometry) Prismatic coefficient, entrance	$\begin{aligned} & \nabla_{\mathrm{E}} /\left(A_{\mathrm{X}} L_{\mathrm{E}}\right) \text { or } \\ & \nabla_{\mathrm{E}} /\left(A_{\mathrm{M}} L_{\mathrm{E}}\right) \end{aligned}$	1
$C_{\text {PF }}$	CPF	(ships, hull geometry) Prismatic coefficient fore body	$\begin{aligned} & \nabla_{\mathrm{F}} /\left(A_{\mathrm{X}} L / 2\right) \text { or } \\ & \nabla_{\mathrm{F}} /\left(A_{\mathrm{M}} L / 2\right) \end{aligned}$	1
$C_{p i}$	CPI	Center of pressure for A_{i}		1
$C_{P R}$	CPR	(ships, hull resistance) Pressure resistance coefficient, including wave effect	$R_{P} /(S q)$	1
$C_{\text {PR }}$	CPR	(ships, hull geometry) Prismatic coefficient, run	$\begin{aligned} & \nabla_{\mathrm{R}} /\left(A_{\mathrm{X}} L_{\mathrm{R}}\right) \text { or } \\ & \nabla_{\mathrm{R}} /\left(A_{\mathrm{M}} L_{\mathrm{R}}\right) \end{aligned}$	1
$C_{\text {PR }}$	CPR	(ACV and SES) Aerodynamic profile drag coefficient	$R_{0} /\left(\rho_{\mathrm{A}} V_{\mathrm{R}}{ }^{2} A_{\mathrm{C}} / 2\right)$	1
$C_{P V}$	CPV	(ships, hull resistance) Viscous pressure resistance coefficient	$R_{P \mathrm{~V}} /(\mathrm{Sq})$	1
$C_{Q^{*}}$	CQS	(ships, propulsor performance) Torque index	$Q /\left(A_{\mathrm{P}} q_{\mathrm{S}} D\right)$	1

ITTC	Computer	Name	Definition or Symbol	Symbol

CR	CR	(fundamental, statistical, stochastic) Population covariance		
$C_{\text {R }}$	CR	(ships, hull resistance) Residuary resistance coefficient	$R_{\mathrm{R}} /(S q)$	
C_{r}	CRA	(environmental mechanics, waves) Average reflection coefficient		1
$C_{\text {r }}$	CRDS	(ships, manoeuvrability, seakeeping) Directional stability criterion	$Y_{v}\left(N_{\mathrm{r}}-m u \chi_{G}\right)-N_{v}\left(Y_{\mathrm{r}}-m u\right)$	$\mathrm{N}^{2} \mathrm{~s}^{2}$
$C_{\text {r }}(f)$	CRF	(environmental mechanics, waves) Reflection coefficient amplitude function		1
$C_{\text {RU }}$	CRU	(sailing vessels) Residuary resistance coefficient (upright)	$R_{\text {RU }} /(S q)$	1
CS	CS	(fundamental, statistical, stochastic) Sample covariance		
$C_{\text {s }}$	CSR	(ships, hull resistance) Spray resistance coefficient	$R_{\mathrm{S}} /(S q)$	1
C_{S}	CS	(ships, hull geometry) Wetted surface coefficient	$S /(\nabla L)^{1 / 2}$	1
$C_{\text {s }}$		(seakeeping, large amplitude motions capsizing) Shape coefficient, depending on the shape of the structural member exposed to the wind		1
$C_{\text {STC }}$	CSTC	Thickness Cord Ratio of Strut		1
$C_{\text {T }}$	CT	(ships, hull resistance) Total resistance coefficient	$R_{\mathrm{T}} /(S q)$	1
$C_{T^{*}}$	CTHS	(ships, propulsor performance) Thrust index	$T /\left(A_{P} q_{S}\right)$	1

ITTC	Computer	Name	Definition or Explanation	SI-
Symbol	Symbol		Unit	

$C_{T h}$	CTH	(ships, propulsor performance) Thrust loading coefficient, energy loading coefficient	$\begin{aligned} & T /\left(A_{\mathrm{P}} q_{\mathrm{A}}\right) \\ & =\left(T_{\mathrm{P}} / A_{\mathrm{P}}\right) / q_{\mathrm{A}} \end{aligned}$	
$C_{\text {TL }}$	CTLT	(ships, hull resistance) Telfer's resistance coefficient	$g R L /\left(\Delta V^{2}\right)$	1
$C_{\text {Tn }}$		(ships, hull resistance, water jets) Thrust loading coefficient:	$\frac{T_{\text {net }}}{\frac{1}{2} \rho U_{0}^{2} A_{\mathrm{n}}}$	1
$C_{\text {TQ }}$	CTQ	(ships, hull resistance) Qualified resistance coefficient	$C_{T \nabla /} /\left(\eta_{\mathrm{H}} \eta_{\mathrm{R}}\right)$	1
$C_{\text {TU }}$	CTU	(sailing vessels) Total resistance coefficient (upright)	$R_{\text {TU }} /(S q)$	1
$C_{\text {TV }}$	CTVOL	(ships, hull resistance) Resistance displacement	$R_{\mathrm{T}} /\left(\nabla^{2 / 3} q\right)$	1
$C^{T \varphi}$	CTPHI	(sailing vessels) Total resistance coefficient with heel and leeway	$R_{\text {T } \varphi} /(S q)$	1
$C_{u v}$	SI(U,V)	(ships, unsteady propeller forces) Generalized stiffness		
$C_{\text {V }}$	CV	(ships, hull resistance) Total viscous resistance coefficient	$R_{\mathrm{V}} /(S q)$	1
C_{V}	CSP	(planing, semi-displacement vessels) Froude number based on breadth	$V /\left(B_{\mathrm{CG}} g\right)^{1 / 2}$	1
$C_{\text {VP }}$	CVP	(ships, hull geometry) Prismatic coefficient vertical	$\nabla /\left(A_{\mathrm{W}} T\right)$	1
$C_{\text {W }}$	CW	(ships, hull resistance) Wave making resistance coefficient	$R_{\mathrm{W}} /(S q)$	1
$C_{\text {WA }}$	CWA	(ships, hull geometry) Water plane area coefficient, aft	$A_{\text {WA }} /(B L / 2)$	1
$C_{\text {WC }}$	CWC	(ACV and SES) Cushion wave making coefficient		1

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$C_{\text {WF }}$	CWF	(ships, hull geometry) Water plane area coefficient, forward	$A_{\text {WF }} /(B L / 2)$	1
$C_{\text {WP }}$	CW	(ships, hull geometry) Water plane area coefficient	$A_{\text {WP }} /(L B)$	1
$C_{\text {WP }}$	CWP	(ships, hull resistance) Wave pattern resistance coefficient, by wave analysis		1
$C_{\text {Wu }}$	CWU	(sailing vessels) Wave resistance coefficient (upright)		1
C_{X}	CX	(ships, hull geometry) Maximum transverse section coefficient	$A_{\mathrm{X}} /(B T)$,where B and T are measured at the position of maximum area	1
C_{x}		(sailing vessels) Force coefficients		1
$C^{\chi x}$	XXCR	(fundamental, statistical, stochastic) Auto-covariance of a stationary stochastic process	$\left(x(t)-\chi^{E}\right)\left(x(t+\tau)-x^{E}\right)^{E}$	
$C_{x y}$	XYCR	(fundamental, statistical, stochastic) Cross-covariance of two stationary stochastic processes	$\left(x(t)-x^{E}\right)\left(y(t+\tau)-y^{E}\right)^{E}$	
C_{y}		(sailing vessels) Force coefficients		1
C_{z}		(sailing vessels) Force coefficients		1
$C_{\text {V }}$	CVOL	(ships, hull geometry) Volumetric coefficient	∇ / L^{3}	1
C_{Δ}	CDL	(planing, semi-displacement vessels) Load coefficient	$\Delta /\left(B_{\mathrm{CG}}{ }^{3} \rho g\right)$	1
C_{Δ}	CLOAD	(ACV and SES) Cushion loading coefficient	$\Delta /\left(g \rho_{\mathrm{A}} A_{\mathrm{C}}{ }^{3 / 2}\right)$	1
c	CS	(fluid mechanics, flow parameter) Velocity of sound	$(E / \rho)^{1 / 2}$	m/s

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Version 2011} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
\mathbf{C}, \mathbf{c} \\
\text { SI- } \\
\text { Unit }
\end{array}
$$}

\hline ITTC \& Computer \& Name \& Definition or \&

\hline Symbol \& Symbol \& \& Explanation \&

\hline c \& CH, LCH \& (ships, propulsor geometry, appendage geometry) Chord length, chord length of a foil section \& \& m

\hline $c_{\text {C }}$ \& CHC \& (hydrofoil boats) Chord length at centre plane \& \& m

\hline $c_{\text {F }}$ \& CFL \& (hydrofoil boats) Chord length of flap \& \& m

\hline $C_{\text {es }}$ \& \& (ships, hull resistance, water jets) Energy velocity coefficient at station s \& \& 1

\hline $c_{\text {FT }}$ \& CHTI \& (hydrofoil boats) Chord length at foil tips \& \& m

\hline $c_{\text {G }}$

c_{i} \& VG \& (environmental mechanics, waves) Wave group velocity or celerity (uncertainty) Sensitivity coefficient \& The average :rate of advance of the energy in a finite train of gravity waves $c_{i}=\partial f / \partial x_{i}$. \& m/s

\hline $c_{\text {LE }}$ \& CHLE \& Chord, leading part \& The part of the Chord delimited by the Leading Edge and the intersection between the Generator Line and the pitch helix at the considered radius \& m

\hline c_{M} \& CHM, CHM \& (ships, appendage geometry, propulsor geometry, fluid mechanics, lifting surfaces hydrofoil boats) Mean chord length \& The expanded or developed area of a propeller blade divided by the span from the hub to the tip, $A_{\text {RT }} / S$ \& m

\hline $C_{\text {ms }}$ \& \& (ships, hull resistance, water jets) Momentum velocity coefficient at station s \& \& 1

\hline $c_{\text {PF }}$ \& CPFL \& (hydrofoil boats) Distance of centre of pressure on a foil or flap from leading edge \& \& m

\hline $c_{\text {R }}$ \& CHRT \& (fluid mechanics, lifting surfaces, ships, appendage geometry) Chord length at the root \& \& m

\hline
\end{tabular}

Version				C, C
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
${ }_{\text {c }}$	CS	(ships, propulsor geometry) Skew displacement	The displacement between middle of chord and the blade reference line. Positive when middle chord is at the trailing side regarding the blade reference line	m
$c_{\text {S }}$	CSTR	(hydrofoil boats) Chord length of a strut		m
$c_{\text {SF }}$	CHSF	(hydrofoil boats) Chord length of strut at intersection with foil		m
$c_{\text {T }}$	CHTP	(ships, appendage geometry) Chord length at the tip		m
$c_{\text {TE }}$	CHTE	Chord, trailing part	The part of the Chord delimited by the Trailing Edge and the intersection between the Generator Line and the pitch helix at the considered radius	m
$c_{\text {W }}$	VP	(environmental mechanics, waves) Wave phase velocity or celerity	$L_{\mathrm{W}} / T_{\mathrm{W}}=\sqrt{g L_{W} / 2 \pi} \text { in }$ deep water	m/s
$c_{\text {Wi }}$	VP(I)	(environmental mechanics, waves) Wave phase velocity of harmonic components of a periodic wave	$\text { const }=c_{\mathrm{W}}$ for periodic waves in deep water	m/s

Version				D, d
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
D	DR	(fundamental, statistical, stochastic) Population deviation		
D	DEP	(ships, hull geometry) Depth, moulded, of a ship hull		m
D	D, DI	(ships, basic quantities) Diameter		m
D	DP	(ships, propulsor geometry, propulsor performance) Propeller diameter		m
D	FF(1)	(ships, basic quantities) Drag (force)	Force opposing translatory velocity, generally for a completely immersed body	N
D		(ships, propulsor geometry, water jets) Impeller diameter (maximum)		m
D_{0}	DC0	(ships, manoeuvrability, turning circles) Inherent steady turning diameter $\delta_{\mathrm{R}}=\delta_{0}$		m
$D_{0}{ }^{\prime}$	DC0N	(ships, manoeuvrability, turning circles) Nondimensional inherent steady turning diameter	$D_{0} / L_{\text {PP }}$	1
$D_{\text {C }}$	DC	(ships, manoeuvrability, turning circles) Steady turning diameter		m
$D_{\text {C }}{ }^{\prime}$	DCNO	(ships, manoeuvrability, turning circles) Nondimensional steady turning diameter	$D_{\text {C }} / L_{\text {PP }}$	1
$D_{\text {C }}$	DC	(fluid mechanics, cavitation) Cavity drag		N
$D_{\text {F }}$	DRF	(fluid mechanics, lifting surfaces, hydrofoil boats) Foil drag	Force in the direction of motion of an immersed foil	N
$D_{\text {FF }}$	DFF	(hydrofoil boats) Drag force on front foil	$C_{\text {DF }} A_{\text {FF }} q$	N

ITTC	Computer	Name	Definition or Explanation	SI- Symbol

$D_{\text {FR }}$	DFA	(hydrofoil boats) Drag force on rear foil	$C_{\text {DF }} A_{\text {FR }} q$	N
$D_{\text {H }}$	DHUL	(multi-hull vessels) Hull diameter	Diameter of axis symmetric submerged hulls	m
$D^{\mathrm{h}}{ }_{u v}$	DH(U,V)	(ships, basic quantities), Generalized hydrodynamic damping	$\partial F^{\mathrm{h}}{ }^{\prime} / \partial V_{v}$	
$D_{\text {I }}$	DRIND	(fluid mechanics, lifting surfaces, hydrofoil boats) Induced drag	For finite span foil, the component of lift in the direction of motion	N
$D_{\text {INT }}$	DRINT	(fluid mechanics, lifting surfaces, hydrofoil boats) Interference drag	Due to mutual interaction of the boundary layers of intersecting foil	N
$D_{\text {n }}$		(ships, propulsor geometry, water jets) Nozzle discharge diameter		m
$D_{\text {P }}$	DRSE	(fluid mechanics, lifting surfaces) Section or profile drag at zero lift	Streamline drag	N
Dp		Pressure differential of flow rate transducer		Pa
$D_{\text {P0 }}$	DRF0	(hydrofoil boats) Profile drag for angle of attack equal to zero lift	Streamline drag	N
$D_{\text {PB }}$	DPB	Maximum Diameter of Pod Body		m
DR	DR	(fundamental, statistical, stochastic) Population deviation		
DS	DS	(fundamental, statistical, stochastic) Sample deviation		
$D_{\text {SP }}$	DRSP	(hydrofoil boats) Spray drag	Due to spray generation	N
$D_{\text {ST }}$	DRST	(hydrofoil boats) Strut drag		N
$D_{u v}$	DA(U,V)	(ships, unsteady propeller forces) Generalized damping		
D_{V}	DRVNT	(hydrofoil boats) Ventilation drag	Due to reduced pressure at the rear side of the strut base	N

ITTC	Computer	Name	Definition or Explanation	SI- Symbol

$D_{\text {W }}$	DRWA	(hydrofoil boats) Wave drag	Due to propagation of surface waves	N
$D_{\text {X }}$	DX	(multi-hull vessels) Hull diameter at the longitudinal position "X"		m
$\begin{aligned} & D_{\mathrm{X}}(f, \theta), \\ & D_{\mathrm{X}}(\omega, \mu), \end{aligned}$	DIRSF	(environmental mechanics, waves) Directional spreading function	$S(f, \theta)=S(f) D_{\mathrm{x}}(f, \theta)$ where $\int_{0}^{2 \pi} D_{\mathrm{x}}(f, \theta) d \theta=1$	rad
d	D, DI	(ships, basic quantities) Diameter		m
d	T	(ships, hull geometry seakeeping, large amplitude motions capsizing)) Draught, moulded, of ship hull		m
d		(seakeeping, large amplitude motions capsizing) Density coefficient for submerged test weights		1
$d_{\text {A }}$	TA, TAP	(ships, hull geometry) Draught at aft perpendicular		m
$d_{\text {D }}$	CLEARD	(ships, propulsor geometry) Propeller tip clearance	Clearance between propeller tip and inner surface of duct	m
$d_{\text {F }}$	TF, TFP	(ships, hull geometry) Draught at forward perpendicular		m
$d_{\text {h }}$	DH	(ships, propulsor geometry) Boss or hub diameter	$2 r_{\text {h }}$	m
$d_{\text {ha }}$	DHA	Hub diameter, aft	Aft diameter of the hub, not considering any shoulder	m
$d_{\text {hf }}$	DHF	Hub diameter, fore	Fore diameter of the hub, not considering any shoulder	m
$d_{\text {KL }}$	KDROP	(ships, hull geometry) Design drop of the keel line	$T_{\text {AD }}-T_{\text {FD }}$ alias "keel drag"	m
$d_{\text {M }}$	TM, TMS	(ships, hull geometry) Draught at midship	$\left(T_{\mathrm{A}}+T_{\mathrm{F}}\right) / 2$ for rigid bodies with straight keel	m

ITTC Symbols

Version 2011

D, d

ITTC	Computer		
Symbol	Name	Definition or Explanation	SI- Symbol

$d_{\text {TR }}$	DTRA	(planing, semi-displacement vessels) Immersion of tran- som, underway	Vertical depth of trailing edge of boat at keel below water surface level

ITTC	Computer	Name	Definition or Explanation	SI- Symbol

E	EL	(fluid mechanics, flow parameter) Modulus of elasticity	Pa
E	EM	Mainsail base	m
E	MR	(fundamental, statistical, stochastic) Expectation, population mean	
E	E, EN	(ships, basic quantities) Energy	J
E	EM	(sailing vessels) Mainsail base	m
$E_{\text {I }}$	MEI	(environmental mechanics, ice) Modulus of elasticity of ice	Pa
$E_{\text {s }}$		(ships, hull resistance, water $\iint_{A_{S}} \rho\left(\frac{1}{2} \boldsymbol{u}^{2}+\frac{p}{\rho}-g_{j} x_{j}\right) u_{i} n_{i} d A$ station s (kinetic + potential + pressure)	W
$E_{\text {s } \xi}$		(ships, hull resistance, water $\iint_{A_{S}} \rho\left(\frac{1}{2} u_{\xi}^{2}+\frac{p}{\rho}-g_{j} x_{j}\right) u_{i} n_{i} d A$ jets) Total axial (in ξ direction) energy flux at station s	W
e	ED	(fluid mechanics, flow fields) $\rho V^{2} / 2+p+\rho g h$ Density of total flow energy	Pa
$e_{\text {A }}$	ENAPP	$\begin{array}{ll} \text { (planing, semi-displacement } & \text { Distance between } N_{\mathrm{A}} \text { and } \\ \text { vessels) Lever of appendage } & \text { centre of gravity (measured } \\ \text { lift force } N_{\mathrm{A}} & \text { normally to } N_{\mathrm{A}} \text {) } \end{array}$	m
$e_{\text {B }}$	ENBOT	$\begin{array}{ll} \text { (planing, semi-displacement } & \text { Distance between } N_{\mathrm{B}} \text { and } \\ \text { vessels) Lever of bottom } & \text { centre of gravity (measured } \\ \text { normal force } N_{\mathrm{B}} & \text { normally to } N_{\mathrm{B}} \text {) } \end{array}$	m
$e_{\text {PN }}$	ENPN	(planing, semi-displacement Distance between propeller vessels) Lever of propeller centreline and centre of normal force N_{PN} gravity (measured along shaft line)	m

ITTC	Computer	Name	Definition or Symbol	Symbol

$e_{\text {PP }}$	ENPP	(planing, semi-displacement vessels) Lever of resultant of propeller pressure forces $N_{\text {PP }}$	Distance between $N_{\text {PP }}$ and centre of gravity (measured normally to N_{PP})
$e_{\text {PS }}$	ENPS	(planing, semi-displacement vessels) Lever of resultant propeller suction forces $N_{\text {PS }}$	Distance between $N_{P S}$ and centre of gravity (measured normal to N_{PS})
$e_{\mathrm{R} P}$	ENRP	(planing, semi-displacement vessels) Lever of resultant of rudder pressure forces $N_{\mathrm{R} P}$	Distance between $N_{\mathrm{RP} P}$ and centre of gravity (measured normal to $N_{\mathrm{R} P}$)

Version				F, f
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
F	CQF	(fluid mechanics, boundary layers) Entrainment factor	$1 /\left(U_{\mathrm{e}} d Q / d x\right)$	1
F	FETCH	(environmental mechanics, wind) Fetch length	Distance over water the wind blows	m
F	F, F0	(ships, basic quantities) Force		N
F		(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Centre of flotation of the water plane		
F		(seakeeping, large amplitude motions capsizing) Wind force - IMO/IS		
F^{0}	F, F0	(ships, basic quantities) Force		N
$F^{0}{ }_{1}$	$\begin{aligned} & \text { FX, } \\ & \text { F0(1), F(1) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis x		N
$F^{0}{ }_{2}$	$\begin{aligned} & \text { FY, } \\ & \text { FO(2), F(2) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis y		N
$F^{0}{ }_{3}$	$\begin{aligned} & \text { FZ, } \\ & \text { F0(3), F(3) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis z		N
F_{1}	$\begin{aligned} & \text { FX, } \\ & \text { F0(1), F(1) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis x		N
F^{1}	F1	(ships, basic quantities) Moment of forces	First order moment of a force distribution	Nm
$F^{1}{ }_{1}$	F1(1), F(4)	(solid body mechanics, loads) Moment around body axis X		Nm
$F^{1}{ }_{2}$	F1(2), F(5)	(solid body mechanics, loads) Moment around body axis y		Nm
$F^{1}{ }_{3}$	F1(3), F(6)	(solid body mechanics, loads) Moment around body axis z		Nm

Version				\mathbf{F}, \mathbf{f}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
F_{2}	$\begin{aligned} & \text { FY, } \\ & \text { F0(2), F(2) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis y		Nm
F_{3}	$\begin{aligned} & \text { FZ, } \\ & \text { F0(3), F(3) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis z		Nm
F_{4}	F1(1), F(4)	(solid body mechanics, loads) Moment around body axis X		Nm
F_{5}	F1(2), F(5)	(solid body mechanics, loads) Moment around body axis y		Nm
F_{6}	F1(3), F(6)	(solid body mechanics, loads) Moment around body axis z		Nm
$\overline{F B}$	XFB	(seakeeping, large amplitude motions capsizing) Longitudinal centre of buoyancy, L_{CB}, from forward perpendicular	Distance of centre of buoyancy from forward perpendicular	m
F^{C}	CIRCF	(ships, hull resistance) R.E. Froude's frictional resistance coefficient	$1000 R_{\mathrm{F}} /\left(\Delta\left(K^{C}\right)^{2}\right)$	1
$F_{\text {D }}$	SFC	Friction deduction force in self propulsion test	Towing force applied to a model to correct the model resistance for different $R e$ between model and full scale.	N
$\overline{F F}$	XFF	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitudinal centre of floatation, L_{CF}, from forward perpendicular	Distance of centre of flotation from forward perpendicular	m
$F^{F}{ }_{1}$	FF(1)	(ships, basic quantities) Resistance, Drag (force)	Force opposing translatory velocity, generally for a completely immersed body	N
$F^{F}{ }_{2}$	FF(2)	(ships, basic quantities) Cross force	Force normal to lift and drag (forces)	N

Version				F, f
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$F^{F}{ }_{3}$	FF(3)	(ships, basic quantities) Lift (force)	Force perpendicular to translatory velocity	N
$\overline{F G}$	XFG	(ships, hydrostatics, stability) Longitudinal centre of gravity from forward perpendicular	Distance of centre of gravity m from forward perpendicular	
$\overline{F G}$	XFG	(seakeeping, large amplitude motions capsizing) Longitudinal centre of gravity, from forward perpendicular	Distance of centre of gravity from forward perpendicular	
$F_{\text {H }}$		(sailing vessels) Heeling force of sails		N
$F^{\mathrm{h}}{ }_{\mathrm{u}}$	FH(U)	(solid body mechanics, inertial and hydro properties) Generalized hydrodynamic force		
$F_{\text {IN }}$	FNIC	(ice going vessels) Normal ice force on a body	Projection of hull - ice interaction force on the external normal	N
$F_{\text {IT }}$	FTIC	(ice going vessels) Tangential ice force on a body	Projection of the hull - ice interaction force on the direction of motion	N
F_{i}	F(I)	(ships, unsteady propeller forces) Vibratory force	$i=1,2,3$	N
$F_{\text {L }}$	FS(2)	(ships, seakeeping) Wave excited lateral shear force	Alias horizontal!	N
$F_{\text {N }}$	FS(3)	(ships, seakeeping) Wave excited normal shear force	Alias vertical! Remark2419	N
$F_{\text {P }}$	FP	(ships, performance) Force pulling or towing a ship		N
$F_{\text {P0 }}$	FP0	(ships, performance) Pull during bollard test		N
Fr	FN	(fluid mechanics, flow parameter) Froude number	$V /(g L)^{1 / 2}$	1
$F_{\text {R }}$		(sailing vessels) Driving force of sails		N
$F r_{\text {c }}$	FNC	(hydrofoil boats) Froude number based on chord length	$V /\left(g c_{M}\right)^{1 / 2}$	1

Version				\mathbf{F}, \mathbf{f}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$F r_{\text {h }}$	FH	(fluid mechanics, flow parameter) Froude depth number	$V /(g h)^{1 / 2}$	1
Fr ${ }_{\text {I }}$	FNIC	(ice going vessels) Froude number based on ice thickness	$V /\left(g h_{\mathrm{I}}\right)^{1 / 2}$	1
$F r_{L}$	FNFD	(hydrofoil boats) Froude number based on foil distance	$V /\left(g L_{F}\right)^{1 / 2}$	1
Fr_{\square}	FV	(fluid mechanics, flow parameter) Froude displacement number	$V /\left(g \nabla^{1 / 3}\right)^{1 / 2}$	1
F_{i}^{S}	FS(I)	(solid body mechanics, loads) Shearing force	$F^{S 0}{ }_{2}, F^{S 0}{ }_{3}$	N
$F^{\text {S }}{ }_{u}$	FS(U)	(solid body mechanics, loads) Force or load acting at a given planar crosssection of the body, generalized, in section coordinates!	$\begin{aligned} & F_{i}^{S}{ }_{i}=F^{S 0}{ }_{i}{ }_{1} \\ & F^{S_{3+i}}=F^{S 1}{ }_{i}=M_{i}^{B}{ }_{i} \end{aligned}$	$\begin{array}{r} \mathrm{N} \\ \mathrm{Nm} \end{array}$
$F^{\text {T }}$	$\begin{aligned} & \text { FT, } \\ & \text { FS(1) } \end{aligned}$	(solid body mechanics, loads) Tensioning or normal force	$F^{S 0}{ }_{1}$	N
$F_{\text {TA }}$	FTAPP	(planing, semi-displacement vessels) Appendage drag force (parallel to reference line)	Drag forces arising from appendages inclined to flow, assumed to act parallel to the reference line	N
$F_{\text {TB }}$	FTBOT	(planing, semi-displacement vessels) Bottom frictional force (parallel to reference line)	Viscous component of bottom drag forces assumed acting parallel to the reference line	N
$F_{\text {TK }}$	FTKL	(planing, semi-displacement vessels) Keel or skeg drag force (parallel to reference line)	Drag forces arising from keel or skeg, assumed to act parallel to the reference line	N
$F_{\text {TRP }}$	FTRP	(planing, semi-displacement vessels) Additional rudder drag force (parallel to reference line)	Drag forces arising from influence of propeller wake on the rudder assumed to act parallel to the reference line	N

ITTC	Computer	Name	Definition or Symbol	Symbol

F_{u}	F(U)	(solid body mechanics, loads) Force, generalized, load, in body coordinates	$\begin{aligned} & M^{F}{ }_{u}=M^{M}{ }_{u} \\ & F_{i}=F_{i}^{0}{ }^{F_{3+i}=F_{i}^{1}} \end{aligned}$	N
F_{u}	FG(I)	(ships, unsteady propeller forces) Generalized vibratory force	$\begin{aligned} & u=1, . ., 6 \\ & u=1,2,3: \text { force } \\ & u=4,5,6: \text { moment } \end{aligned}$	N N Nm
F_{V}		(sailing vessels) Vertical force of sails		N
$F_{X I}$	FXIC	(ice going vessels) Components of the local ice force		N
F_{x}	XPF	(fundamental, statistical) Probability function (distribution) of a random quantity		1
F_{X}	$\begin{aligned} & \text { FX, } \\ & \text { F0(1), F(1) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis x		Nm
$F_{x y}$	XYPF	(fundamental, statistical) Joint probability function (distribution) function of two random quantities		1
$F_{Y I}$	FYIC	(ice going vessels) Components of the local ice force		N
F_{y}	$\begin{aligned} & \text { FY, } \\ & \text { F0(2), F(2) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis y		N
$F_{\text {ZI }}$	FZIC	(ice going vessels) Components of the local ice force		N
F_{z}	$\begin{aligned} & \text { FZ, } \\ & \text { F0(3), F(3) } \end{aligned}$	(solid body mechanics, loads) Force in direction of body axis z		N
f		(uncertainty) Function	Functional relationship between measurand Y and input quantities X_{i} on which Y depends, and between output estimate y and input estimates x_{i} on which y depends.	1

Version				F, f
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
f	FR	(fundamental, time and frequency domain quantity, ships, seakeeping, environmental mechanics, wave, ships, basic quantities) Frequency	$2 \pi \omega=1 / T$	Hz
f	FREB	(ships, hull geometry, hydrostatics, stability, seakeeping, large amplitude motions, capsizing) Freeboard	From the freeboard markings to the freeboard deck, according to official rules	m
f	FBP	(ships, propulsor geometry) Camber of a foil section		m
f	FM	(ships, appendage geometry) Camber of an aerofoil or a hydrofoil	Maximum separation of median and nose-tail line	m
f	FC	(ships, hull resistance) Friction coefficient	Ratio of tangential force to normal force between two sliding bodies	1
$f_{\text {AA }}$	FRAA	(planing, semi-displacement vessels) Lever of wind resistance $R_{\text {AA }}$	Distance between $R_{\text {AA }}$ and centre of gravity (measured normal to R_{AA})	m
$f_{\text {AP }}$	FRAP	(planing, semi-displacement vessels) Lever of appendage drag $R_{\text {AP }}$	Distance between R_{AP} and centre of gravity (measured normal to R_{AP})	m
$f_{\text {BL }}$	CABL	(ships, hull geometry) Area coefficient for bulbous bow	$A_{\text {BL }} /(L T)$	1
$f_{\text {BT }}$	CABT	(ships, hull geometry) Taylor sectional area coefficient for bulbous bow	$A_{B T} / A_{X}$	1
$f_{\text {C }}$	FC	(fundamental, time and frequency domain quantity) Basic frequency in repeating functions	$1 / T_{\text {C }}$	Hz
$f_{\text {D }}$	FD	(ships, propulsor geometry) Camber of duct profile		m
f_{E}	FE	(ships, seakeeping) Frequency of wave encounter	$1 / T_{\mathrm{E}}$	Hz

Version				F, f
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$f_{\text {F }}$	FRF	(planing, semi-displacement vessels) Lever of frictional resistance R_{F}	Distance between R_{F} and centre of gravity (measured normal to R_{F})	m
$f_{\text {ID }}$	CFRD	(ice going vessels) Coefficient of friction between surface of body and ice (dynamic)	Ratio of tangential force to normal force between two bodies (dynamic condition)	1
$f_{\text {IS }}$	CFRS	(ice going vessels) Coefficient of friction between surface of body and ice (static)	The same as above (static condition)	1
f_{i}	FS(I)	(fluid mechanics, flow fields) Mass specific force	Strength of force fields, usually only gravity field g_{i}	$\mathrm{m} / \mathrm{s}^{2}$
f_{K}	FRK	(planing, semi-displacement vessels) Lever of skeg or keel resistance R_{K}	Distance between R_{K} and centre of gravity (measured normal to R_{K})	m
f_{L}	FML	(fluid mechanics, lifting surfaces) Camber of lower side (general)		m
f_{P}	FRPK	(environmental mechanics, waves) Spectral peak in frequency	Frequency at which the spectrum has its maximum	Hz
$f_{\text {R }}$	FRRC	(environmental mechanics, waves) Frequency resolution	$1 / T_{\mathrm{R}}$	Hz
$f_{\text {R }}$	FDRR	(planing, semi-displacement vessels)Lever of augmented rudder drag ΔR_{RP}	Distance between $\Delta R_{R P}$ and centre of gravity (measured normal to ΔR_{RP})	m
$f_{\text {s }}$	FS, FRSA	(fundamental, time and frequency domain quantity, environmental mechanics, waves) Frequency of sampling, Sample frequency	$1 / T_{\mathrm{S}}$ period in repeating spectra	Hz
$f_{\text {s }}$	FSL	(planing, semi-displacement vessels) Lever of axial propeller thrust	Distance between axial thrust and centre of gravity (measured normal to shaft line)	m
$f_{\text {T }}$	FRT	(planing, semi-displacement vessels) Lever of total resistance R_{T}	Distance between R_{T} and centre of gravity (measured normal to R_{T})	m

Version				\mathbf{F}, \mathbf{f}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$F_{\text {T }}$	ATR	(ships, hull geometry) Sectional area coefficient for transom stern	$A_{\mathrm{T}} / A_{\mathrm{X}}$	1
f_{U}	FMU	(fluid mechanics, lifting surfaces) Camber of upper side		m
$f_{\text {w }}$	FW	(environmental mechanics, waves) Basic wave frequency	$1 / T_{\mathrm{W}}$	Hz
$f_{\text {Wi }}$	FW(I)	(environmental mechanics, waves) Frequencies of harmonic components of a periodic wave	$i f_{\text {w }}$	Hz
f_{x}	XPD	(fundamental, statistical) Probability density of a random quantity	$d F_{x} / d x$	
$f_{x y}$	XYPD	(fundamental, statistical) Joint probability density of two random quantities	$\partial^{2} F_{x y} /(\partial x \partial y)$	
f_{z}		(ships, seakeeping) Natural frequency of heave	$1 / T_{z}$	Hz
f_{θ}		(ships, seakeeping) Natural frequency of pitch	$1 / T_{\theta}$	Hz
f_{φ}		(ships, seakeeping) Natural frequency of roll	$1 / T_{\varphi}$	Hz

ITTC Symbols

Version				G, \mathbf{g}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
G		(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Centre of gravity of a vessel		
$G^{0} i, G_{i}$	G0(I)	(solid body mechanics, loads) Gravity or weight force in body coordinates!	$\begin{aligned} G_{i}=G_{i}^{0} & =m^{0}{ }_{i j} g_{j} \\ & =m g_{i} \end{aligned}$	N
$G^{1}{ }_{i}$	G1(I)	(solid body mechanics, loads) Gravity or weight moment in body coordinates!	$\begin{aligned} G_{3+i}=G^{1}{ }_{i} & =\varepsilon_{i k j} x_{k} G^{0}{ }_{j} \\ & =m^{1}{ }_{i j} g_{j} \end{aligned}$	Nm
$\overline{G G}_{1}$	GGV	(seakeeping, large amplitude motions capsizing) Vertical stability lever caused by a weight shift or weight addition	$\overline{K G}_{1}=\overline{K G}_{0}+\overline{G G}_{1}$	m
$\overline{G G}_{\text {H }}$	GGH	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Horizontal stability lever caused by a weight shift or weight addition		m
$\overline{G G}$	GGL	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Longitudinal stability lever caused by a weight shift or weight addition		m
$\overline{G G}_{V}$	GG1	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Vertical stability lever caused by a weight shift or weight addition	$\overline{K G_{1}}=\overline{K G_{0}}+\overline{\mathrm{GG}}_{1}$	m
GM	GM	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Transverse metacentric height	Distance of centre of gravity to the metacentre $\overline{G M}=\overline{K M}-\overline{K G}$ (not corrected for free surface effect)	m

ITTC	Computer	Name	Definition or Symbol
Symbol			Unit

$\overline{G M}_{\text {EfF }}$	GMEFF	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Effective transverse metacentric height	GM Corrected for free surface and/or free communication effects	m
$G M_{L}$	GML	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Longitudinal metacentric height	Distance from the centre of gravity G to the longitudinal metacentre M_{L} $\overline{G M_{L}}=\overline{K M_{L}}-\overline{K G}$	m
G_{u}	G(U)	(solid body mechanics, loads) Gravity or weight force, generalized, in body coordinates!	$G_{u}=m_{u v} g_{v}$	N
GZ		(seakeeping, large amplitude motions capsizing) Arm of static stability corrected for free surfaces - IMO/table		m
$\overline{G Z}$	GZ	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Righting arm or lever	$\begin{aligned} & \overline{G Z}=\overline{A Z}-\overline{A G}_{\mathrm{V}} \sin \varphi- \\ & \overline{A G}_{\mathrm{T}} \cos \varphi \end{aligned}$	m
$\overline{G Z}_{\text {MAX }}$	GZMAX	(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Maximum righting arm or lever		m
G_{Z}	GAP	(ships, propulsor geometry) Gap between the propeller blades	$2 \pi r \sin (\varphi) / \mathrm{z}$	m
g	G, GR	(ships, basic quantities) Acceleration of gravity	Weight force / mass, strength of the earth gravity field	$\mathrm{m} / \mathrm{s}^{2}$
g		(seakeeping, large amplitude motions capsizing, ships, hydrostatics, stability) Centre of gravity of an added or removed weight (mass)		1

Version				G, g
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
g^{E}	GMR	(fundamental, statistical) Expected value of a function of a random quantity	$\begin{array}{r} E(g)=\int_{g} g(x) f_{x}(x) d x \\ x=-\infty \ldots \infty \end{array}$	
g_{i}	G1(I)	(solid body mechanics, loads) Gravity field strength, in body coordinates!		$\mathrm{m} / \mathrm{s}^{2}$
g^{M}	GMR	(fundamental, statistical) Expected value of a function of a random quantity	$\begin{array}{r} E(g)=\int_{g} g(x) f_{x}(x) d x \\ x=-\infty \ldots \infty \end{array}$	
$g^{M R}$	GMR	(fundamental, statistical) Expected value of a function of a random quantity	$\begin{array}{r} E(g)=\int_{x} g(x) f_{x}(x) d x \\ x=-\infty \ldots \infty \end{array}$	
$g^{M R}$	GMR	(fundamental, statistical, stochastic) Mean of a function of a random quantity	$\begin{gathered} M(g(t))=\lim \left(1 / T \int g(t) d t\right) \\ t=-T / 2 \ldots+T / 2 \\ T=-\infty \ldots+\infty \end{gathered}$	
$g^{\text {MS }}$	GMS	(fundamental, statistical, stochastic) Average or sample mean of a function of a random quantity	$\begin{aligned} & A(g(t))=1 / T \int g(t) d t \\ & t=0 \ldots+T \end{aligned}$	
g_{u}	G(U)	(solid body mechanics, loads) Gravity field strength, generalized, in body coordinates	$\begin{gathered} g_{i}=g^{1}{ }_{i} \\ g_{3+i}=0 \end{gathered}$	$\mathrm{m} / \mathrm{s}^{2}$

ITTC	Computer	Name	Definition or Symbol
Symbol			SI-

| H | HT | (fluid mechanics, flow fields) $e / w=h+p / w+q / w$
 Total head
 H | H, HT |
| :--- | :--- | :--- | ---: | | (ships, basic quantities) |
| :--- |
| H |

H	
H_{1}	HT

(sailing vessels) Side force
(ships, hull resistance, water m
jets) Local total head at station 1
H_{35}
(ships, hull resistance, water
jets) Mean increase of total
head across pump and stator
or several pump stages

$H_{\text {CG }}$	HVCG	(ACV and SES) Height of centre of gravity above mean water plane beneath craft	
$H_{\text {DK }}$	HCLDK	(multi-hull vessels) Deck clearance	Minimum clearance of wet deck from water surface at rest
$H_{\text {d }}$	HD	(environmental mechanics, waves) Wave height by zero down-crossing	The vertical distance between a crest and a successive trough.
$H_{\text {E }}$	HQF	(fluid mechanics, boundary layers) Entrainment shape parameter	$\left(\delta-\delta^{*}\right) / \Theta$
H_{H}	HH	(ACV and SES) Vertical spacing between inner and outer side skirt hinges or attachment points to structure	needs clarification
$H_{i j}$		(ships, propulsor geometry, water jets) Head between station i and j	
$H_{\text {JS }}$		(ships, propulsor geometry, water jets) Jet System Head	

ITTC	Computer	Name	Definition or Symbol
Symbol		SI-	

HL		(seakeeping, large amplitude motions capsizing) Heeling lever (due to various reasons) - IMO/HSC'2000	
$H_{m o}$	HMO	(environmental mechanics, waves) Significant wave height based on zeroth moment for narrow banded spectrum	$4\left(m_{0}\right)^{1 / 2}$
H_{N}	HTNT	(fluid mechanics, cavitation) Net useful head of turboengines	
$H_{\text {SK }}$	HSK	(ACV and SES) Skirt depth	
$H_{\text {ss }}$	HSS	(multi-hull vessels) Strut submerged depth	Depth of strut from still water line to strut-hull intersection
$H_{\text {TC }}$	HTC	(ships, propulsor geometry) Hull tip clearance	Distance between the propeller sweep circle and the hull
H_{U}	HTUS	(fluid mechanics, cavitation) Total head upstream of turbo-engines	
H_{u}	HU	(environmental mechanics, waves) Wave height by zero up-crossing	The vertical distance between a trough and a successive crest
$H_{\text {W }}$	HW	(environmental mechanics, waves) Wave height	The vertical distance from wave crest to wave trough, or twice the wave amplitude of a harmonic wave. $\eta_{\mathrm{C}}-\eta_{\mathrm{T}}$
$H_{\text {W1/3 }}$	H13D	(environmental mechanics, waves) Significant wave height	Average of the highest one third zero down-crossing wave heights
$H_{\text {W1/3d }}$	H13D	(environmental mechanics, waves) Zero down-crossing significant wave height	Average of the highest one third zero down-crossing wave heights
$H_{\text {W1/3u }}$	H13U	(environmental mechanics, waves) Zero up-crossing significant wave height	Average of the highest one third zero up-crossing wave heights

ITTC	Computer	Name	Definition or Symbol
Symbol			SI-

H_{WV}	HWV	(environmental mechanics, waves) Wave height esti- mated from visual observa- tion H_{σ}	HWDS
(environmental mechanics,			
waves) Estimate of signifi-			
cant wave height from sam-			
ple deviation of wave eleva-			
tion record			

ITTC	Computer	Name	Definition or Symbol
Symbol			SI-

$h_{\text {I }}$	HTIC	(ice going vessels) Thickness of ice	
$h_{\text {J }}$	HJ	(ships, propulsor geometry, water jets) Height of jet centreline above undisturbed water surface	
h_{K}	HKE	(hydrofoil boats) Keel clearance	Distance between keel and mean water surface foil borne
$h_{\text {LP }}$		(seakeeping, large amplitude motions capsizing) Height of waterline above centre of area of immersed profile	
$h_{\text {M }}$	DEME	(ships, manoeuvrability) Mean water depth	
$h_{\text {P }}$	HSP	(planing, semi-displacement vessels) Wetted height of strut palms (flange mounting)	
$h_{\text {R }}$	HRU	(planing, semi-displacement vessels) Wetted height of rudders	
$h_{\text {SN }}$	HTSN	(ice going vessels) Thickness of snow cover	
$h_{\text {SS }}$	HSS	(ACV and SES) Stern seal height	Distance from side wall keel to lower edge of stern seal
$h_{\text {R }}$	HRU	(planing, semi-displacement vessels) Wetted height of rudders	

Version				I, i
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
I	IM	(fundamental, time and frequency domain quantity) Imaginary variable		1
I	ID	(fluid mechanics, flow fields) Induction factor	Ratio between velocities induced by helicoidal and by straight line vortices	1
I	I, IN	(ships, basic quantities) Moment of inertia	Second order moment of a mass distribution	kg m ${ }^{2}$
I	I	(sailing vessels) Fore triangle height		m
I_{12}	I2 $(1,2)$	(solid body mechanics, iner-		$\mathrm{kg} \mathrm{m}{ }^{2}$
I_{23}	I2 $(2,3)$	tial and hydro properties)		
I_{31}	I2 $(3,1)$	Real products of inertia in case of non-principal axes		
$I^{\mathrm{h}}{ }_{u v}$	IH(U,V)	(solid body mechanics, inertial and hydro properties) Generalized hydrodynamic inertia	$\partial F^{\mathrm{h}}{ }_{l} \partial \dot{V}_{v}$	
$I_{i j}$	IN(I,J)	(solid body mechanics, inertial and hydro properties) Second moments of mass, i.e. inertia distribution	Alias mass moments of inertia	$\mathrm{kg} \mathrm{m}{ }^{2}$
$I_{\text {AS }}$	ASI	(seakeeping, large amplitude motions capsizing) Attained subdivision index		1
$I_{\text {L }}$	IL	(solid body mechanics, inertial and hydro properties) Longitudinal second moment of water-plane area	About transverse axis through centre of floatation	m^{4}
$I_{\text {T }}$	IT	(solid body mechanics, inertial and hydro properties) Transverse second moment of water-plane area	About longitudinal axis through centre of floatation	m^{4}
$I_{\text {VR }}$	IVR	(ships, hull resistance, water jets) Intake velocity ratio		1
$I_{x y}$	IXY	(solid body mechanics, inertial and hydro properties) Real products of inertia in case of non-principal axes		kg m ${ }^{2}$

ITTC	Computer	Name	Definition or Symbol	Symbol

$I_{y}, I_{y y}$,	IY, IYY,	(solid body mechanics, inertial and hydro properties) Pitch moment of inertia around the principal axis y		$\mathrm{kg} \mathrm{m}{ }^{2}$
$I_{y z}$	IYZ	(solid body mechanics, inertial and hydro properties) Real products of inertia in case of non-principal axes		kg m ${ }^{2}$
$I_{z}, I_{z z}$	IZ, IZZ,	(solid body mechanics, inertial and hydro properties) Yaw moment of inertia around the principal axis z		kg m ${ }^{2}$
$I_{z X}$	IZX	(solid body mechanics, inertial and hydro properties) Real products of inertia in case of non-principal axes		kg m ${ }^{2}$
i	I	(fundamental, time and frequency domain quantity) Imaginary unit	sqrt(-1)	1
$i_{\text {EI }}$	ANENIN	(multi-hull vessels) Half angle of entrance at tunnel (inner) side	Angle of inner water line with reference to centre line of demihull	rad
$i_{\text {EO }}$	ANENOU	(multi-hull vessels) Half angle of entrance at outer side	Angle of outer water line with reference to centre line of demihull	rad
$i_{\text {E }}$	ANEN	(ships, hull geometry) Angle of entrance, half	Angle of waterline at the bow with reference to centre plane, neglecting local shape at stem	rad
i_{G}	RAKG	(ships, propulsor geometry) Rake	The distance between the propeller plane and the generator line in the direction of the shaft axis. Aft displacement is positive rake.	m
$i_{\text {R }}$	ANRU	(ships, hull geometry) Angle of run, half	Angle of waterline at the stern with reference to the centre-plane, neglecting local shape of stern frame	rad

ITTC Symbols

Version 2011		I, í i		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
i_{S}	RAKS	(ships, propulsor geometry) Rake, skew-induced	The axial displacement of a blade section which occurs when the propeller is skewed. Aft displacement is positive rake	m
i_{T}	RAKT	(ships, propulsor geometry) Rake, total	The axial displacement of the blade reference line from the propeller plane	m
$i_{\mathrm{G}}+i_{\mathrm{S}}=c_{\mathrm{S}}$ sin φ				
Positive direction is aft.				

Version				J, j
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
J	JEI	(ships, propulsor performance) Propeller advance ratio	$V_{\text {A }} /(D n)$	1
J	J	(sailing vessels) Fore triangle base		m
$J_{\text {A }}$	JA	(ships, propulsor performance) Apparent or hull advance ratio	$V /(D n)=V_{H} /(D n)$	1
J_{H}	JH	(ships, propulsor performance) Apparent or hull advance ratio	$V /(D n)=V_{H} /(D n)$	1
$J_{\text {P }}$	JP	(ships, propulsor performance) Propeller advance ratio for ducted propeller	$V_{\mathrm{P}} /(\mathrm{D} \mathrm{n})$	1
$J_{\text {PQ }}$	JPQ	(ships, propulsor performance) Advance ratio of propeller determined from torque identity		1
$J_{\text {PT }}$	JPT	(ships, propulsor performance) Advance ratio of propeller determined from thrust identity		1
J_{Q}	JQ	(ships, propulsor performance) Advance ratio of propeller determined from torque identity		1
J_{T}	JT	(ships, propulsor performance) Advance ratio of propeller determined from thrust identity		1
$J_{\text {VR }}$	JVR	(ships, hull resistance, water jets)) Jet velocity ratio	V_{J} / V	1
j	J	(fundamental, time and frequency domain quantity) Integer values	$-\infty \ldots$	1

Version				K, k
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
K		(ships, hydrostatics, stability seakeeping, large amplitude motions capsizing) Keel reference		
K	MX	(ships, manoeuvrability, seakeeping, solid body mechanics, loads) Roll moment on body, moment about body x-axis		Nm
K	KS	(ships, manoeuvrability, seakeeping) Gain factor in linear manoeuvring equation		1/s
K	K	(solid body mechanics, loads) Moment around body axis X		Nm
K_{1}	C1	(ships, performance) Ship model correlation factor for propulsive efficiency	$\eta_{\text {DS }} / \eta_{\text {DM }}$	1
K_{2}	C2	(ships, performance) Ship model correlation factor for propeller rate revolution	n_{S} / n_{M}	1
KA	ZKA	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Assumed centre of gravity above moulded base or keel	Distance from the assumed centre of gravity A to the moulded base or keel K	m
$K_{\text {APP }}$	KAP	(ships, performance) Appendage correction factor	Scale effect correction factor for model appendage drag applied at the towing force in a self-propulsion test	1
$\overline{K B}$	ZKB	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Centre of buoyancy above moulded base or keel	Distance from the centre of buoyancy B to the moulded base or keel K	m
K^{C}	CIRCK	(ships, hull resistance) R.E. Froude's speed displacement coefficient	$\begin{aligned} & (4 \pi)^{1 / 2} F r_{\nabla} \text { or } \\ & (4 \pi / g)^{1 / 2} V_{\mathrm{K}} / \nabla^{1 / 6} \end{aligned}$	1

Version				K, k
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { ITnit } \end{gathered}$
$K_{F i}$	KF(I)	(ships, unsteady propeller forces) Vibratory force coefficients	$F_{i} /\left(\rho n^{2} D^{4}\right)$	
$K_{\text {Fu }}$	KF(U)	(ships, unsteady propeller forces) Generalized vibratory force coefficients	According to definitions of $K_{F i}$ and $K_{M i}$	1
$\overline{K G}$	ZKG	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Centre of gravity above moulded base or keel	Distance from centre of gravity G to the moulded base or keel K	m
$\overline{\mathrm{Kg}}$	ZKAG	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Vertical centre of gravity of added or removed weight above moulded base or keel	Distance from centre of gravity, g, to the moulded base or keel K	m
K_{H}		(ships, propulsor geometry, water jets) Head coefficient:	$\frac{g H}{n^{2} D^{5}}$	
KM	ZKM	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Transverse metacentre above moulded base or keel	Distance from the transverse metacentre M to the moulded base or keel K	m
$K_{M i}$	KM(I)	(ships, unsteady propeller forces) Vibratory moment coefficients	$M_{i} /\left(\rho n^{2} D^{5}\right)$	1
$\overline{K M}_{L}$	ZKML	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitudinal metacentre above moulded base or keel	Distance from the longitudinal metacentre M_{L} to the moulded base or keel K	m
K_{P}	KP	(ships, propulsor performance) Delivered power coefficient	$P_{\mathrm{D}} /\left(\rho n^{3} D^{5}\right)=2 \pi K_{Q}$	1
K_{p}	KPR	(ships, unsteady propeller forces) Pressure coefficient	$p /\left(\rho n^{2} D^{2}\right)$	1
K_{Q}	KQ	(ships, propulsor performance, hull resistance, water jets)) Torque coefficient	$Q /\left(\rho n^{2} D^{5}\right)$	

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

$K_{Q J}$		(ships, hull resistance, water jets) Flow rate coefficient:	$\frac{Q_{\mathrm{J}}}{n D^{3}}$
$K_{Q 0}$	KQ0	(ships, propulsor performance) Torque coefficient of propeller converted from behind to open water condition	$K_{Q} \eta_{\mathrm{R}}$
$K_{Q T}$	KQT	(ships, propulsor performance) Torque coefficient of propeller determined from thrust coefficient identity	
$K_{\text {QIA }}$	KQICMS	(ice going vessels) Average coefficient of torque in ice	$Q_{\mathrm{IA}} /\left(\rho_{\mathrm{W}} n_{\mathrm{IA}}{ }^{2} D^{5}\right)$
$K_{\text {SC }}$	KSC	(ships, propulsor performance) Centrifugal spindle torque coefficient	$Q_{\text {SC }} /\left(\rho n^{2} D^{5}\right)$
$K_{\text {SH }}$	KSH	(ships, propulsor performance) Hydrodynamic spindle torque coefficient	$Q_{\text {SH }} /\left(\rho n^{2} D^{5}\right)$
K_{R}	KR	(ships, hull resistance) Resistance coefficient corresponding to K_{Q}, K_{T}	$R /\left(\rho D^{4} n^{2}\right)$
K_{T}	KT	(ships, propulsor performance) Thrust coefficient	$T /\left(\rho n^{2} D^{4}\right)$
$K_{\text {TD }}$	KTD	(ships, propulsor performance) Duct thrust coefficient	$T_{\mathrm{D}} /\left(\rho n^{2} D^{4}\right)$
$K_{\text {TIA }}$	KTICMS	(ice going vessels) Average coefficient of thrust in ice	$T_{\text {IA }} /\left(\rho_{\mathrm{W}} n_{\mathrm{IA}}{ }^{2} D^{4}\right)$
$K_{\text {TP }}$	KTP	(ships, propulsor performance) Ducted propeller thrust coefficient	$T_{\mathrm{P}} /\left(\rho n^{2} D^{4}\right)$
$K_{\text {TT }}$	KTT	(ships, propulsor performance) Total thrust coefficient for a ducted propeller unit	$K_{T \mathrm{P}}+K_{\text {TD }}$
k		(uncertainty) Coverage factor	For calculation of expanded k uncertainty $U=k u_{c}(y)$
k	HK	(fluid mechanics, flow parameter) Roughness height or magnitude	Roughness height, usually in terms of some average

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

$k \quad$ WN | (environmental mechanics, $2 \pi / L_{\mathrm{W}}=\omega^{2} / g$ |
| :--- |
| waves) Wave number |$\quad 1 / \mathrm{m}$

$k \quad \mathrm{~K} \quad$ (ships, hull resistance) Three $\left(C_{\mathrm{V}}-C_{\mathrm{F} 0}\right) / C_{\mathrm{F}}$
dimensional form factor on flat plate friction
$k \quad$ RDGX (solid body mechanics, iner- $\left(I_{x x} / m\right)^{1 / 2} \quad \mathrm{~m}$ tial and hydro properties)
Roll radius of gyration around the principal axis x
$k \quad$ (seakeeping, large amplitude
motions capsizing) Roll
damping coefficient express-
ing the effect of bilge keels

k_{p}	(uncertainty) Coverage fac- tor for probability p	For calculation of expanded uncertainty $U_{p}=k_{p} u_{\mathrm{c}}(y)$	
k_{S}	SK	(fluid mechanics, flow pa- rameter) Sand roughness	Mean diameter of the equivalent sand grains cov- ering a surface

$k_{x}, k_{x x}$	RDGX	(solid body mechanics, iner- $\left(I_{x x} / m\right)^{1 / 2}$ tial and hydro properties) Roll radius of gyration around the principal axis x	m		
$k_{y}, k_{y y}$	RDGY	(solid body mechanics, iner- $\left(I_{y y} / m\right)^{1 / 2}$ tial and hydro properties) Pitch radius of gyration around the principal axis y	m		
$k_{z}, k_{z z}$	RDGZ	(solid body mechanics, iner- $\left(I_{z z} / m\right)^{1 / 2}$ tial and hydro properties)	m		
$k(\theta)$	Yaw radius of gyration				
around the principal axis z				\quad	(ships, hull resistance) Wind $C_{\mathrm{AA}} / C_{\mathrm{AA} 0}$
:---					
direction coefficient					

ITTC	Computer	Name	Definition or Explanation	SI- Symbol

$L_{\text {CG }}$	XCG	(ships, hydrostatics, stability) Longitudinal centre of gravity (LCG)	Longitudinal distance from a reference point to the centre of gravity, G such as $\mathrm{X}_{\mathrm{MCG}}$ from Midships
$L_{\text {CH }}$	LCH	(multi-hull vessels) Length of centre section of hull	Length of prismatic part of hull
$L_{\text {CS }}$	LCS	(multi-hull vessels) Length of centre section of strut	Length of prismatic part of strut
$L_{\text {D }}$	LD	(ships, propulsor geometry) Duct length	
$L_{\text {DEN }}$	LDEN	(ships, propulsor geometry) Duct entry part length	Axial distance between leading edge of duct and propeller plane
$L_{\text {DEX }}$	LDEX	(ships, propulsor geometry) Duct exit length	Axial distance between propeller plane and trailing edge of duct
$L_{\text {d }}$	LSR	(ships, manoeuvrability, seakeeping) Damping stability lever	$\left(N_{r}-m u x_{G}\right) /\left(Y_{r}-m u\right)$
L_{E}	LEN	(ships, hull geometry) Length of entrance	From the forward perpendicular to the forward end of parallel middle body, or maximum section
L_{E}	LACE	(ACV and SES) Effective length of cushion	$A_{\mathrm{C}} / B_{\mathrm{C}}$
$L_{\text {EFF }}$	LEFF	(sailing vessels) Effective length for Reynolds Number	
$L_{\text {F }}$	LF	(ships, appendage geometry) Length of flap or wedge	Measured in direction parallel to keel
$L_{\text {F }}$	LF	(hydrofoil boats) Lift force on foil	$C_{L} A_{\text {FT }} q$
$L_{\text {FF }}$	LFF	(hydrofoil boats) Lift force on front foil	$C_{L} A_{\text {FF }} q$
$L_{\text {FR }}$	LFR	(hydrofoil boats) Lift force on rear foil	$C_{L} A_{\text {FR }} q$
$L_{\text {FS }}$	LFS	(ships, hull geometry) Frame spacing	used for structures

ITTC	Computer	Name	Definition or	SI-

Symbol Symbol
Explanation Unit

$L_{\text {H }}$	LH	(multi-hull vessels) Box length	Length of main deck
$L_{\text {H }}$	LH	(ACV and SES) Horizontal spacing between inner and outer side skirt hinges or attachment points to structure	needs clarification
$L_{\text {HY }}$		(sailing vessels) Hydrodynamic lift force	
$L_{\text {K }}$	LK	(planing, semi-displacement vessels) Wetted keel length, underway	
L_{M}	LM	(planing, semi-displacement vessels) Mean wetted length, underway	$\left(L_{\mathrm{K}}+L_{\mathrm{C}}\right) / 2$
$L_{\text {NH }}$	LNH	(multi-hull vessels) Length of nose section of hull	Length of nose section of hull with variable diameter
$L_{\text {NS }}$	LNS	(multi-hull vessels) Length of nose section of strut	Length of nose section of strut with variable thickness
$L_{\text {OA }}$	LOA	(ships, hull geometry) Length, overall	
$L_{\text {OS }}$	LOS	(ships, hull geometry) Length, overall submerged	
$L_{\text {P }}$	LP	(ships, hull geometry) Length of parallel middle body	Length of constant transverse section
$L_{\text {PB }}$	LPB	Length of Pod Main Body	
$L_{\text {PBF }}$	LPBF	Length of Bottom Fin	Code length of bottom fin under pod main body
$L_{\text {PR }}$	LPRC	(planing, semi-displacement vessels) Projected chine length	Length of chine projected in a plane parallel to keel
$L_{\text {PS }}$	LPS	Length of Upper Strut	Code length of strut between forward edge and aft edge

Version				, 1
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$L_{\text {R }}$	LRU	(ships, hull geometry) Length of run	From section of maximum area or after end of parallel middle body to waterline termination or other designated point of the stern	m
$L_{\text {S }}$	LS	(multi-hull vessels) Strut length	Length of strut from leading to trailing edge	m
$L_{\text {S }}$	LS	(ACV and SES) Distance of leading skirt contact point out-board or outer hinge of attachment point to structure	needs clarification	m
$L_{\text {SB }}$	LSB	(planing, semi-displacement vessels) Total length of shafts and bossings		m
$L_{\text {SH }}$	LSH	(multi-hull vessels) Length of submerged hull		m
$L_{\text {SS }}$	LSS	(ships, hull geometry) Station spacing		m
$L_{\text {TO }}$	LT0	(hydrofoil boats) Lift force at take off	$C_{\text {LTO }} A_{\text {FT }} q$	N
$L_{\text {VHD }}$	LVD	(planing, semi-displacement vessels) Vertical component of hydrodynamic lift		N
LVs	LVS	(planing, semi-displacement vessels) Hydrostatic lift	Due to buoyancy	N
$L_{\text {W }}$	LW	(environmental mechanics, waves) Wave length	The horizontal distance between adjacent wave crests in the direction of advance	m
$L_{\text {WV }}$	LWV	(environmental mechanics, waves) Wave length estimated by visual observation	Measured in the direction of wave propagation	m
$L_{\text {WL }}$	LWL	(ships, hull geometry) Length of waterline		m
l	XTA	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitudinal trimming arm	$x_{\text {CG }}-x_{\text {CB }}$	m

ITTC	Computer	Name	Definition or Symbol	Symbol

l		(seakeeping, large amplitude motions capsizing) Arm of dynamic stability corrected for free surfaces - IMO/table (seakeeping, large amplitude motions capsizing) Maxi- mum tank length	m
l_{b}	LSB	(ships, manoeuvrability, seakeeping) Static stability lever	N_{v} / Y_{v}

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

l_{R}	LERF	(hydrofoil boats) Horizontal distance of centre of pres- sure of rear foil to centre of gravity	m
I_{r}	LHRD	(ships, manoeuvrability, turning circles) Loop height of r - curve for unstable ship	
I_{s}	(seakeeping, large amplitude motions capsizing) Actual length of enclosed super- structure extending from side to side of the vessel	$\mathrm{rad} / \mathrm{s}$	
I_{w}	(seakeeping, large amplitude motions capsizing) Wind heeling lever (ships, manoeuvrability, turning circles) Loop width of r - δ curve for unstable ship	m	
l_{δ}	LWRD	m	

Version 2011				$\frac{\mathbf{M}, \mathbf{m}}{\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
M	M1, F1	(ships, basic quantities) Moment of forces	First order moment of a force distribution	Nm
M	MO	(ships, basic quantities) Momentum		Ns
M	MR	(fundamental, statistical, stochastic) Expectation, population mean		
M		(ships, hydrostatics, stability) (seakeeping, large amplitude motions capsizing) Metacentre of a vessel	See subscripts for qualification	
M,	M,	(solid body mechanics, loads) Moment around body axis y		Nm
M	MY	(ships, manoeuvrability, seakeeping) Pitch moment on body, moment about body y-axis		Nm
M	MSP	(hydrofoil boats) Vessel pitching moment		Nm
Ma	MN	(fluid mechanics, flow parameter) Mach number	V/c	1
$M^{\text {B }}{ }_{i}$	MB(I)	(solid body mechanics, loads) Bending moment	$F^{\text {S }}{ }_{2}, F^{\text {S1 }}{ }_{3}$	Nm
$M^{\text {C }}$	CIRCM	(ships, hull geometry) R.E. Froude's length coefficient, or length-displacement ratio	$L / \nabla^{1 / 3}$	1
$M_{\text {C }}$		(seakeeping, large amplitude motions capsizing) Maximum offset load moment due to crew		Nm
$M_{\text {c }}$		(seakeeping, large amplitude motions capsizing) Minimum capsizing moment as determined when account is taken of rolling		Nm
$M_{\text {F }}$	MLF	(hydrofoil boats) Load factor of front foil	L_{FF} / Δ	1

ITTC	Computer	Name	Definition or Explanation	SI- Symbol

$M_{\text {FS }}$		(seakeeping, large amplitude motions capsizing) Free surface moment at any inclination		Nm
M_{i}	M(I)	(ships, unsteady propeller forces) Vibratory moment	$i=1,2,3$	Nm
$M_{\text {L }}$	$\begin{aligned} & \text { MB(3), } \\ & \text { FS(6) } \end{aligned}$	(ships, seakeeping) Wave excited lateral bending moment	Alias horizontal!	Nm
$M_{\text {is }}$		(ships, hull resistance, water jets) Momentum flux at station s in i direction	$\iint_{A_{5}} \rho u_{i}\left(u_{j} n_{j}\right) d A$	W
$M_{\text {N }}$	$\begin{aligned} & \text { MB(2), } \\ & \text { FS(5) } \end{aligned}$	(ships, seakeeping) Wave excited normal bending moment	Alias vertical!	Nm
M, MR	MR	(fundamental, statistical, stochastic) Expectation, population mean		
$M_{\text {R }}$	MLR	(hydrofoil boats) Load factor of rear foil	L_{FR} / Δ	1
$M_{\text {R }}$		(seakeeping, large amplitude motions capsizing) Heeling moment due to turning		Nm
$M_{\text {S }}$	MS	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Moment of ship stability in general	$\Delta \overline{G Z}$ Other moments such as those of capsizing, heeling, etc. will be represented by M_{S} with additional subscripts as appropriate	Nm
MS	MS	(fundamental, statistical, stochastic) Average, sample mean		1
$M_{\text {T }}$	$\begin{aligned} & \text { MT(1), } \\ & \text { FS(4) } \end{aligned}$	(ships, seakeeping) Wave excited torsional moment		Nm
$M^{\text {T }}$	MT, MB(1)	(solid body mechanics, loads) Twisting or torsional moment	$F^{\text {S1 }}{ }_{1}$	Nm

Version				M, m
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$M_{\text {TC }}$	MTC	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Moment to change trim by one centimetre		Nm/cm
$M_{\text {TM }}$	MTM	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Moment to change trim by one meter	$\Delta C_{\text {MTL }}$	Nm/m
$M_{u v}$	MA(U,V)	(ships, unsteady propeller forces, solid body mechanics, inertial and hydro properties) Generalized mass, i. e. generalized inertia tensor of a (rigid) body referred to a body fixed coordinate system	$\begin{aligned} & M_{i j}=M^{0}{ }_{i j} \\ & M_{i, 3+j}=M^{1 \mathrm{~T}}{ }_{i j} \\ & M_{3+i, j}=M^{1}{ }_{i j} \\ & M_{3+i, 3+j}=M^{2}{ }_{i j} \end{aligned}$	kg
$M_{\text {W }}$		(seakeeping, large amplitude motions capsizing) Maximum heeling moment due to wind		Nm
M_{V}		(seakeeping, large amplitude motions capsizing) Dynamically applied heeling moment due to wind pressure		Nm
M_{x},	$\mathrm{M}(1)$,	(solid body mechanics, loads) Moment around body axis X		Nm
M_{y},	$\mathrm{M}, \mathrm{M}(2)$,	(solid body mechanics, loads) Moment around body axis y		Nm
M_{z},	M (3	(solid body mechanics, loads) Moment around body axis z		Nm
m	M, MA, MASS	(ships, basic quantities, solid body mechanics, inertial and hydro properties) Mass		kg

Version 2011				$\frac{\mathbf{M}, \mathbf{m}}{\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
m	ХАСВ	(ships, hydrostatics, stability) Longitudinal centre of floatation of added buoyant layer	Longitudinal distance from reference point to the centre of the added buoyant layer, b	m
m	SHIPMA	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Ship mass	W / g	kg
m	BLCK	(ships, hull resistance) Blockage parameter	Maximum transverse area of model ship divided by tank cross section area	1
$\begin{aligned} & m_{i j}^{0} \\ & m_{i j} \end{aligned}$	$\begin{aligned} & \text { M0(I,J), } \\ & \text { MA(I,J) } \end{aligned}$	(solid body mechanics, inertial and hydro properties) Zeroth moments of mass, i.e. inertia distribution, mass tensor	$m_{i j}=m \delta_{i j}$	kg
$m^{1}{ }_{i j}$	M1(I,J)	(solid body mechanics, inertial and hydro properties) First moments of mass, i.e. inertia distribution	Alias static moments of mass	kg m
$\begin{aligned} & m_{22}^{2}, \\ & m_{55} \end{aligned}$	$\begin{aligned} & \text { M2(2,2), } \\ & \text { MA(5,5) } \end{aligned}$	(solid body mechanics, inertial and hydro properties) Pitch moment of inertia around the principal axis y		$\mathrm{kg} \mathrm{m}{ }^{2}$
$\begin{aligned} & m_{33}^{2}, \\ & m_{66} \end{aligned}$	$\begin{aligned} & \text { M2(3,3), } \\ & \text { MA(6,6) } \end{aligned}$	(solid body mechanics, inertial and hydro properties) Yaw moment of inertia around the principal axis z		kg m ${ }^{2}$
$m^{2}{ }_{i j}$,	M2(I,J),	(solid body mechanics, inertial and hydro properties) Second moments of mass, i.e. inertia distribution	Alias mass moments of inertia	$\mathrm{kg} \mathrm{m}{ }^{2}$
$m_{\text {LCC }}$		(seakeeping, large amplitude motions capsizing) Mass in light craft condition		kg
$m_{\text {LDC }}$		(seakeeping, large amplitude motions capsizing) Mass in loaded displacement condition according to ...		kg

ITTC	Computer	Name	Definition or Symbol	Symbol

$m_{\text {MTL }}$		(seakeeping, large amplitude motions capsizing) Maximum total load (mass)		kg
m_{n}	MN	(environmental mechanics, waves) n-th moment of wave power spectral density	$\int f^{n} S(f) d f$	$\mathrm{m}^{2} / \mathrm{s}^{n}$
$m_{\text {SSC }}$		(seakeeping, large amplitude motions capsizing) Mass in standard sailing conditions according to ...		kg
m_{x}	XMS	(fundamental, statistical) Average or sample mean of a random quantity	$1 / n \sum x_{i}, i=1 \ldots n$ unbiased random estimate of the expectation with $\begin{aligned} & x^{\mathrm{AE}}=x^{\mathrm{E}} \\ & x^{\mathrm{VSE}}=x^{\mathrm{V}} / n \end{aligned}$	

Version				N, n
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
N	FR, N	(ships, basic quantities) Frequency or rate of revolution	Alias RPS (RPM in some propulsor applications)	Hz
N		(uncertainty) Number of input quantities	Number of input quantities X_{i} on which the measurand Y depends	1
N	MZ	(ships, manoeuvrability, seakeeping) Yaw moment on body, moment about body zaxis		Nm
N	$\begin{aligned} & \mathrm{N}, \mathrm{M}(3), \\ & \mathrm{F} 1(3), \mathrm{F}(6) \end{aligned}$	(solid body mechanics, loads) Moment around body axis z		Nm
$N_{\text {A }}$	NAPP	(planing, semi-displacement vessels) Appendage lift force (normal to reference line)	Lift forces arising from appendages inclined to flow, assumed to act normally to reference line	N
$N_{\text {B }}$	NBOT	(planing, semi-displacement vessels) Bottom normal force (normal to reference line)	Resultant of pressure and buoyant forces assumed acting normally to the reference line	N
$N_{\text {P }}$	NPR	(ships, propulsor geometry) Number of propellers		1
$N_{\text {PP }}$	NPP	(planing, semi-displacement vessels) Propeller pressure force (normal to reference line)	Resultant of propeller pressure forces acting normally to the reference line	N
$N_{\text {PS }}$	NPS	(planing, semi-displacement vessels) Propeller suction force (normal to reference line)	Resultant of propeller suction forces acting normally to the reference line	N
N_{r}	NR	(ships, manoeuvrability, seakeeping) Derivative of yaw moment with respect to yaw velocity	$\partial \mathrm{N} / \partial r$	Nms
$N_{\text {RP }}$	NRP	(planing, semi-displacement vessels) Rudder pressure force (normal to reference line)	Resultant of rudder pressure forces acting normally to the reference line	N

Version 2011				$\frac{\mathbf{N}, \mathbf{n}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$N_{\text {r }}$	NRRT	(ships, manoeuvrability, seakeeping) Derivative of yaw moment with respect to yaw acceleration	$\partial N / \partial \dot{r}$	Nms ${ }^{2}$
$N V R$		(ships, hull resistance, water jets) Nozzle velocity ratio:	$\frac{\overline{u_{6 \xi}}}{U_{0}}$	1
N_{v}	NV	(ships, manoeuvrability, seakeeping) Derivative of yaw moment with respect to sway velocity	$\partial \mathrm{N} / \partial$	Ns
N_{ν}^{ν}	NVRT	(ships, manoeuvrability, seakeeping) Derivative of yaw moment with respect to sway acceleration	$\partial \mathrm{N} / \partial \dot{\nu}$	Nms ${ }^{2}$
N_{δ}	ND	(ships, manoeuvrability, seakeeping) Derivative of yaw moment with respect to rudder angle	$\partial N / \partial \delta$	Nm
n		Number of repeated observations		1
n	FR, N	(ships, basic quantities, performance, propulsor performance) Frequency or rate of revolution	Alias RPS (RPM in some propulsor applications)	Hz
n		(ships, hull resistance, water jets) Impeller rotation rate		Hz
$n_{\text {AW }}$	NAW	(ships, seakeeping) Mean increased rate of revolution in waves		1/s ${ }^{2}$
n_{i}		(ships, hull resistance, water $j e t s)$ Unit normal vector in i direction		1
$n_{\text {IA }}$	FRICMS	(ice going vessels) Average rate of propeller revolution in ice		Hz

ITTC Symbols

Version 2011		O, 0		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$\overline{O G}$		(seakeeping, large amplitude motions capsizing) Height of centre of gravity above wa- terline	m	

Version				\mathbf{P}, \mathbf{p}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
P	P, PO	(ships, basic quantities) Power		W
P	PT	(fluid mechanics, boundary layers) Total pressure		Pa
P	PITCH	(ships, propulsor geometry) Propeller pitch in general		m
P	P	(sailing vessels) Mainsail height		m
$P_{\text {AW }}$	PAW	(ships, seakeeping) Mean power increased in waves		W
$P_{\text {B }}$	PB	(ships, performance) Brake power	Power delivered by prime mover	W
$P D$	PD	(fundamental, statistical, stochastic) Probability density		1
$P_{\text {D }}$	PD, PP	(ships, performance) Delivered power, propeller power	$Q \omega$	W
$P_{\text {D }}$		(ships, hull resistance, water jets) Delivered Power to pump impeller		W
$P_{\text {DI }}$	PDI	(ice going vessels) Delivered power at propeller in ice	$2 \pi Q_{\text {IA }} n_{\text {IA }}$	W
$P_{\text {E }}$	PE, PR	(ships, performance) Effective power, resistance power	R V	W
$P_{\text {E }}$		(ships, hull resistance, water jets) Effective power:	$R_{\text {TBH }} U_{0}$	W
P_{F}	PF	(fundamental, statistical, stochastic) Probability function		1
$P_{\text {FCU }}$	PFCU	(ACV and SES) Power of lift fan		W
$P_{\text {FSK }}$	PFSK	(ACV and SES) Power of skirt fan		W
$P_{\text {I }}$	PI	(ships, performance) Indicated power	Determined from pressure measured by indicator	W
$P_{\text {J }}$	PJ	(ships, propulsor performance) Propeller jet power	$\eta_{\text {TJ }} T V_{\text {A }}$	W

Version				\mathbf{P}, \mathbf{p}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
$P_{\text {JSE }}$		(ships, hull resistance, water jets) Effective Jet System Power	$Q_{\mathrm{J}} H_{1 \mathrm{~A} 7}$	W
P_{n}	PN	(ships, manoeuvrability, seakeeping) P-number, heading change per unit rudder angle in one ship length		1
$P_{\text {P }}$	PD, PP	(ships, performance) Delivered power, propeller power	$Q \omega$	W
$P_{\text {PE }}$		(ships, hull resistance, water jets) Pump effective power:	$Q_{\mathrm{J}} \mathrm{H}_{35}$	W
P_{R}	PE, PR	(ships, performance) Effective power, resistance power	R V	W
$P_{\text {S }}$	PS	(ships, performance) Shaft power	Power measured on the shaft	W
P_{T}	PTH	(ships, performance) Thrust power	$T V_{\text {A }}$	W
$P_{\text {TE }}$		(ships, hull resistance, water jets) Effective thrust power		W
P_{V}		(seakeeping, large amplitude motions capsizing) Wind pressure		Pa
p		(uncertainty) Probability	Level of confidence: $0 \leq p \leq$ 1.0	1
p	P	(solid body mechanics, rigid body motions) Rotational velocity around body axis x		$\mathrm{rad} / \mathrm{s}$
p	PR, ES	(fluid mechanics, flow fields) Pressure, density of static flow energy		Pa
p	PR	(fluid mechanics, boundary layers) Static pressure		Pa
p	PDR	(ships, propulsor geometry) Pitch ratio	P / D	1
p	PR	(ships, unsteady propeller forces) Pressure		Pa

Version 2011				\mathbf{P}, \mathbf{p}
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit
p	OX, P	(ships, manoeuvrability)		1/s
		Roll velocity, rotational ve-		
		locity about body x-axis		
p_{0}	P0	(fluid mechanics, flow fields)		Pa
		Ambient pressure in undisturbed flow		
p_{0}	PR0	(ships, hull resistance, water jets) Ambient pressure in		$\mathrm{N} / \mathrm{m}^{2}$
$p_{\text {A }}$	PA	(fluid mechanics, cavitation) Ambient pressure		Pa
$p_{\text {AC }}$	PACO	(fluid mechanics, cavitation)	Absolute ambient pressure at	Pa
		Collapse pressure	which cavities collapse	
$p_{\text {AI }}$	PAIC	(fluid mechanics, cavitation) Critical pressure	Absolute ambient pressure at which cavitation inception takes place	Pa
$p_{\text {B }}$	PBM	(ACV and SES) Mean bag		Pa
$p_{\text {BS }}$	PBS	(ACV and SES) Bow seal pressure	Pressure in the bow seal bag	Pa
$p_{\text {c }}$	PC	(fluid mechanics, cavitation) Cavity pressure	Pressure within a steady or quasi-steady cavity	Pa
$p_{\text {CI }}$	PCIN	(fluid mechanics, cavitation) Initial cavity pressure	Pressure, may be negative, i. e. tensile strength, necessary to create a cavity	Pa
$p_{\text {CE }}$	PCE	(ACV and SES) Mean effective skirt pressure		Pa
$p_{\text {CU }}$	PCU	(ACV and SES) Cushion pressure	Mean pressure in the cushion	Pa
$p_{\text {FT }}$	PFT	(ACV and SES) Fan total pressure		Pa
$p_{\text {LR }}$	PLR	(ACV and SES) Cushion pressure to length ratio	$P_{\text {CU }} / L_{\text {C }}$	Pa / m
$p_{\text {s }}$		(ships, hull resistance, water jets) Local static pressure at station s		Pa

ITTC Symbols

Version 2011				$\frac{\mathbf{P}, \mathbf{p}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$p_{\text {SK }}$	PSK	(ACV and SES) Skirt pressure in general		Pa
$p_{\text {SS }}$	PSS	(ACV and SES) Stern seal pressure	Pressure in the stern seal bag	Pa
p_{V}	PV	(fluid mechanics, cavitation) Vapour pressure of water	At a given temperature!	Pa
\dot{p}	PR	(solid body mechanics, rigid body motions) Rates of change of components of rotational velocity relative to body axes		$\mathrm{rad} / \mathrm{s}^{2}$
\dot{p}	OXRT, PR	(ships, manoeuvrability) Roll acceleration, angular acceleration about body xaxis	$d p / d t$	$1 / \mathrm{s}^{2}$

Version				Q, q
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
Q	Q	(ships, performance) Torque	P_{D} / ω	Nm
Q		(fundamental, balances and system related) Quantity under consideration		Q U/s
Q	QF, QFLOW	(fluid mechanics, flow fields) Rate of flow	Volume passing across a control surface in time unit	$\mathrm{m}^{3} / \mathrm{s}$
Q	QF	(fluid mechanics, boundary layers) Entrainment	$\begin{aligned} & b \\ & f_{U} d y \\ & a \end{aligned}$	$\mathrm{m}^{2} / \mathrm{s}$
Q		(ships, hull resistance, water jets) Impeller torque		Nm
$Q_{\text {AW }}$	QAW	(ships, seakeeping) Mean torque increased in waves		Nm
$Q_{\text {BS }}$	QBS	(ACV and SES) Bow seal air flow rate	Air flow rate to the bow seal	$\mathrm{m}^{3} / \mathrm{s}$
$Q_{\text {bl }}$		(ships, hull resistance, water jets) Volume flow rate inside boundary layer		m³/s
$Q^{\text {C }}$	QCF	(fundamental, balances and system related) Convective flux		$Q^{\mathrm{U} / \mathrm{s}}$
$Q_{\text {cu }}$	QCU	(ACV and SES) Cushion air flow rate	Air flow rate to cushion	$\mathrm{m}^{3} / \mathrm{s}$
$Q^{\text {D }}$	QDF	(fundamental, balances and system related) Diffusive flux		$Q^{\mathrm{U}} / \mathrm{s}$
Q^{F}	QFL	(fundamental, balances and system related) Total flux across the surface of the control volume	Inward positive!	$Q^{\mathrm{U} / \mathrm{s}}$
$Q_{\text {FB }}$	QFB	(ships, manoeuvrability, seakeeping) Torque of bow fin		Nm
$Q_{\text {FS }}$	QFS	(ships, manoeuvrability, seakeeping) Torque of stern fin		Nm
$Q_{\text {IA }}$	QIMS	(ice going vessels) Average torque in ice		Nm

ITTC	Computer	Name	Definition or Symbol	Symbol

$Q_{\text {J }}$		(ships, hull resistance, water jets) Volume flow rate through water jet system	$\mathrm{m}^{3} / \mathrm{s}$
$Q^{\text {M }}$	QDM	(fundamental, balances and system related) Molecular diffusion	$Q^{\mathrm{U} / \mathrm{s}}$
$Q^{\text {P }}$	QPN	(fundamental, balances and system related) Production of sources in the control volume	$Q^{\mathrm{U} / \mathrm{s}}$
$Q_{\text {R }}$	QRU	(ships, manoeuvrability, seakeeping) Torque about rudder stock	Nm
Qs	QSP	(ships, propulsor About spindle axis of performance) Spindle torque controllable pitch propeller $Q_{\mathrm{S}}=Q_{\mathrm{SC}}+Q_{\mathrm{SH}}$ positive if it increases pitch	Nm
$Q^{\text {S }}$	QRT	(fundamental, balances and dq/dt system related) Storage in the control volume, rate of change of the quantity stored	$Q^{\mathrm{U} / \mathrm{s}}$
$Q_{\text {sc }}$	QSPC	(ships, propulsor performance) Centrifugal spindle torque	Nm
$Q_{\text {SH }}$	QSPH	(ships, propulsor performance) Hydrodynamic spindle torque	Nm
$Q_{\text {ss }}$	QSS	(ACV and SES) Stern seal air Air flow rate to the stern seal flow rate	$\mathrm{m}^{3} / \mathrm{s}$
$Q_{\text {T }}$	QT	(ACV and SES) Total air volume flow	$\mathrm{m}^{3} / \mathrm{s}$
$Q^{\text {T }}$	QDT	(fundamental, balances and system related) Turbulent diffusion	$Q^{\mathrm{U} / \mathrm{s}}$
$Q_{\text {TS }}$	QTS	(ACV and SES) Total air volume flow of skirt	$\mathrm{m}^{3} / \mathrm{s}$
q		(uncertainty) Random quantity	1

Version				Q, \mathbf{q}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
\bar{q}		(uncertainty) Arithmetic mean or average		1
q	Q	(fundamental, balances and system related) Quantity of the quality under consideration stored in a control volume		$Q^{\text {U }}$
q	UNQ	(solid body mechanics, loads) Load per unit length		N/m
q	Q	(solid body mechanics, rigid body motions) Rotational velocity around body axis y		rad/s
q	PD, EK	(fluid mechanics, flow fields) Dynamic pressure, density of kinetic flow energy,	$\rho V^{2} / 2$	Pa
q	PD, EK	(ships, hull resistance) Dynamic pressure, density of kinetic flow energy,	$\begin{aligned} & \rho V^{2} / 2 \\ & \text { see 3.3.2 } \end{aligned}$	Pa
q	OY, Q	(ships, manoeuvrability) Pitch velocity, rotational velocity about body y-axis		1/s
$q_{\text {A }}$	QA	(ships, propulsor performance) Dynamic pressure based on advance speed	$\rho V_{\mathrm{A}}{ }^{2} / 2$	Pa
q_{k}		(uncertainty) kth observation of q	$k^{\text {th }}$ independent repeated observation of randomly varying quantity q	1
$q_{\text {R }}$	PDWR, EKWR	(ships, hull resistance) Dynamic pressure based on apparent wind	$\begin{aligned} & \rho V_{\mathrm{WR}}{ }^{2} / 2 \\ & \text { see 3.4.2 } \end{aligned}$	Pa
$q_{\text {s }}$	QS	(ships, propulsor performance) Dynamic pressure based on section advance speed	$\rho V_{\mathrm{S}}{ }^{2} / 2$	Pa
\dot{q}	OYRT, QR	(ships, manoeuvrability) Pitch acceleration, angular acceleration about body y axis	$d q / d t$	$1 / \mathrm{s}^{2}$

ITTC Symbols

Version 2011
Q, q
ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

$\dot{q} \quad \mathrm{QR} \quad$| (solid body mechanics, rigid |
| :--- |
| body motions) Rates of |
| change of components of |
| rotational velocity relative to |
| body axes |

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

R	R	(fundamental, time and fre- quency domain quantity)	$\exp \left(s T_{s}\right)$ Complex variable

$R \quad \mathrm{R}, \mathrm{RE} \quad$| (ships, basic quantities) $\mathrm{Re}-$ |
| :--- |
| sistance (force) | | Force opposing translatory |
| :--- |
| velocity |$\quad \mathrm{N}$

$R \quad$ RD (ships, basic quantities) Ra- m

| R | RDP | (ships, propulsor geometry)
 Propeller radius |
| :--- | :--- | :--- | m

| R_{A} | RA | (ships, hull resistance)
 Model-ship correlation al-
 lowance |
| :--- | :--- | :--- | | Incremental resistance to be |
| :--- |
| added to the smooth ship |
| resistance to complete the |
| model-ship prediction |$\quad \mathrm{N}$

$R_{\text {AA }}$	RAA	(ships, hull resistance) Air or 00499913719220 wind resistance	As- trid.stangl@stanglconsult.de
$R_{\text {APP }}$	RAP	(ships, hull resistance) Ap- pendage resistance	N
$R_{\text {AR }}$	RAR	(ships, hull resistance) Roughness resistance	N

| $R_{\text {ASK }}$ | RASK | (ACV and SES) Intake mo-
 mentum resistance
 of skirt |
| :--- | :--- | :--- |$\rho_{\mathrm{A}} Q_{\mathrm{TS}} V_{\mathrm{A}} \quad \mathrm{N}$

R_{AW} RAW	(ships, seakeeping, sailing vessels) Mean resistance increased in waves	N

$R_{\text {AT }}$	RAT	(ACV and SES) Total aerodynamic resistance	$R_{M}+R_{0}$
$R_{\text {C }}$	RC	(ships, hull resistance) Resistance corrected for difference in temperature between resistance and self-propulsion tests	$\begin{aligned} & R_{\mathrm{TM}}\left[(1+k) C_{\mathrm{FMC}}+C_{\mathrm{R}}\right] / \\ & {\left[(1+k) C_{\mathrm{FM}}+C_{\mathrm{R}}\right]} \end{aligned}$ where $\mathrm{C}_{\mathrm{FMC}}$ is the frictional coefficient at the temperature of the self-propulsion test

$R_{\mathrm{C}} \quad$ RCS (ships, manoeuvrability, m turning circles) Steady turning radius

$\mathrm{Re} \mathrm{RN} \quad$(fluid mechanics, flow pa- rameter) Reynolds number	$V L / v$

Version				$\mathbf{R , r}$
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$R e^{*}{ }^{*}$	RDELS	(fluid mechanics, boundary layers) Reynolds number based on displacement thickness	$U_{\infty} \delta^{*} / v$ or $U_{\mathrm{e}} \delta^{*} / v$	
$R e_{\theta}$	RTHETA	(fluid mechanics, boundary layers) Reynolds number based on momentum thickness	$U_{\infty} \Theta / v$ or $U_{\mathrm{e}} \Theta / v$	1
$R_{\text {F }}$	RF	(ships, hull resistance) Frictional resistance of a body	Due to fluid friction on the surface of the body	N
$R_{\text {F0 }}$	RF0	(ships, hull resistance) Frictional resistance of a flat plate		N
$R_{\text {FINT }}$	RFINT	(multi-hull vessels) Frictional resistance interference correction	$R_{\text {FMH }}-\Sigma R_{\text {F }}$	N
$R_{\text {FMH }}$	RFMH	(multi-hull vessels) Frictional resistance of multihull vessel		N
$R_{\text {FU }}$		(sailing vessels) Friction resistance (upright)		N
$R_{\text {H }}$	RH	(ACV and SES) Hydrodynamic resistance	$R_{\mathrm{W}}+R_{\text {WET }}$	N
$R_{\text {H }}$	RH	(fluid mechanics, flow parameter) Hydraulic radius	Area of section divided by wetted perimeter	m
$R_{\text {H }}$	RTUHA	(sailing vessels) Resistance increase due to heel (with zero side force)		N
$R_{\text {I }}$		(sailing vessels) Resistance increase due to side (induced resistance)		N
$R_{\text {I }}$	RI	(ice going vessels) Net ice resistance	$R_{\text {IT }}-R_{\text {IW }}$	N
$R_{\text {IT }}$	RIT	(ice going vessels) Total resistance in ice	Ship towing resistance in ice	N
$R_{\text {IW }}$	RIW	(ice going vessels) Hydrodynamic resistance in presence of ice	Total water resistance of ship in ice	N

ITTC Computer Name Definition or SI
Symbol Symbol
Explanation Unit
$R_{\text {k }}$
RAKG
(ships, propulsor geometry)
The displacement from the
m
Rake
propeller plane to the generator line in the direction of the shaft axis. Aft displacement is positive rake.

$R_{\text {K }}$	RKEEL	(planing, semi-displacement vessels) Keel drag		N
R_{M}	RM	(ACV and SES) Intake momentum resistance in general	$\rho_{\mathrm{A}} Q_{\mathrm{T}} V_{\mathrm{A}}$	N
$R_{\text {MCU }}$	RMCU	(ACV and SES) Intake momentum resistance of cushion	$\rho_{\mathrm{A}} Q_{\mathrm{CU}} V_{\mathrm{A}}$	N
R_{P}	RP	(ships, hull resistance) Pressure resistance	Due to the normal stresses over the surface of a body	N
$R_{\text {PAR }}$	RPAR	(planing, semi-displacement vessels) Parasitic drag	Drag due to inlet and outlet openings	N
$R_{\text {PS }}$	RSP	(planing, semi-displacement vessels) Pressure component of spray drag		N
$R_{P V}$	RPV	(ships, hull resistance) Viscous pressure resistance	Due to normal stress related to viscosity and turbulence	N
RR	RR	(fundamental, statistical, stochastic) Population correlation		
$R_{\text {R }}$	RR	(ships, hull resistance) Residuary resistance	$R_{\mathrm{T}}-R_{\mathrm{F}}$ or $R_{\mathrm{T}}-R_{\mathrm{F} 0}$	N
$R_{\text {RBH }}$	RRBH	(ships, hull resistance) Residuary resistance of the bare hull		N
$R_{\text {RI }}$	RRINT	(multi-hull vessels) Residuary resistance interference correction	$R_{\text {RMH }}-\Sigma R_{\text {R }}$	N
$R_{\text {RMH }}$	RRMH	(multi-hull vessels) Residuary resistance correction of multi-hull	$R_{\text {TMH }}-R_{\text {FMH }}$	N
$R_{\text {RU }}$		(sailing vessels) Residuary resistance (upright)		N

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

R_{S}	RS	(ships, hull resistance) Spray Due to generation of spray resistance
$R S$	RS	(fundamental, statistical, stochastic) Sample correla- tion
$R_{\text {SI }}$	RSI	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Required subdivision index

R_{T}	RT	(planing, semi-displacement vessels) Total resistance	N
R_{TBH}	RTBH	(ships, hull resistance, water towed resistance jets) Total resistance of bare hull	N

R_{TI}	RTINT	(multi-hull vessels) Total resistance interference cor- rection	$R_{\mathrm{TMH}}-\Sigma R_{\mathrm{T}}$
R_{TMH}	RTMH	(multi-hull vessels) Total resistance of multi-hull ves- sel	N
		N	

| R_{TU} | RTU | (sailing vessels) Total resis-
 tance (upright) |
| :--- | :--- | :--- | N

$R_{T \varphi} \quad$ RTUH \quad (sailing vessels) Total resis- $R_{\mathrm{TU}}+R_{\varphi} \quad \mathrm{N}$ tance when heeled

(ships, unsteady propeller	$u=1, . ., 6$	N
forces) Generalized vibra-	$u=1,2,3$: force	N
tory bearing reaction	$u=4,5,6:$ moment	Nm

$R_{\mathrm{V}} \quad \mathrm{RV} \quad$ (ships, hull resistance) Total $R_{\mathrm{F}}+R_{P V} \mathrm{~N}$ viscous resistance
(planing, semi-displacement $C_{\mathrm{F}} S_{\mathrm{WS}} q_{\mathrm{S}} \mathrm{N}$
vessels) Viscous component of spray drag

| R_{W} | RW | (ships, hull resistance)
 making resistance |
| :---: | :--- | :--- | | Wave Due to formation of surface |
| :---: |
| waves |$\quad \mathrm{N}$

$R_{\text {WB }}$	RWB	(ships, hull resistance) Wave Associated with the break breaking resistance down of the bow wave	N
$R_{\text {WET }}$	RWET	(ACV and SES) Resistance due to wetting	N

ITTC	Computer
Symbol	Symbol

R_{π}	RPI	(planing, semi-displacement $g \rho \nabla \operatorname{tg} \tau$ vessels) Induced drag
R_{φ}	RTUHA	(sailing vessels) Resistance increase due to heel (with zero side force)

R (solid body mechanics, rigid rad/s body motions) Rotational velocity around body axis z

r	RD	
	(ships, basic quantities) Radius	m

LR (ships, propulsor geometry)
m Blade section radius r

OZ, R (ships, manoeuvrability)
Yaw velocity, rotational velocity about body z-axis

$$
r\left(x_{i}, x_{j}\right)
$$

(uncertainty) Estimated cor- $r\left(x_{i}, x_{j}\right)=u\left(x_{i}, x_{j}\right) /\left(u\left(x_{i}\right) u\left(x_{j}\right)\right)$

ITTC Symbols

Version 2008		R, r		
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	
r	R		(ships, unsteady propeller forces) Cylindrical coordi- nates	Cylindrical system with ori- gin O and longitudinal x-axis as defined before; angular a- (attitude)-coordinate, zero at

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

S	S, AWS	(ships, hull geometry) Area of wetted surface		m^{2}
S	S	(ships, hull resistance) Wetted surface area, underway	$S_{\text {BH }}+S_{\text {APP }}$	m^{2}
S_{0}	S0	(ships, hull resistance) Wetted surface area, at rest	$S_{\text {BH0 }}+S_{\text {APP0 }}$	m^{2}
$S^{0}{ }_{i j}$	SM0(I,J)	Zero ${ }^{\text {th }}$ order moment of a scalar quantity	$\delta_{i j} d s=\delta_{i j} S$	
$S^{1}{ }_{i j}$	SM1(I,J)	(fundamental. coordinate and space related) First order moment of a scalar quantity, formerly static moments of a scalar distribution	$\iint_{\varepsilon_{i k j} \chi_{k}} d s$	
$S^{2}{ }_{i j}$	SM2(I,J)	(fundamental. coordinate and space related) Second moment of a scalar quantity, formerly moments of inertia of a scalar distribution	$\int_{\varepsilon_{k l i} X \mid \chi_{\delta j k m}} X_{m} d s$	
$S_{\text {A }}$	SRA	(ships, propulsor performance) Apparent slip ratio	$1-V /(n P)$	1
$S_{\text {A }}$	AS	(sailing vessels) Sail area in general	$(P E+I J) / 2$	m^{2}
$S_{\text {APP }}$	SAP	(ships, hull resistance) Appendage wetted surface area, underway		m^{2}
$S_{\text {APP0 }}$	SAP0	(ships, hull resistance) Appendage wetted surface area, at rest		m^{2}
$S_{\text {BH }}$	SBH	(ships, hull resistance) Bare Hull wetted surface area, underway		m^{2}
$S_{\text {BH0 }}$	SBH0	(ships, hull resistance) Bare Hull wetted surface area, at rest		m^{2}
S^{C}	CIRCS	(ships, hull geometry, hull resistance) R.E. Froude's wetted surface area coefficient	$S / V^{2 / 3}$	1
$S_{\text {C }}$	SC	(sailing vessels) Wetted surface area of canoe body		m^{2}

Version 2011				$\frac{\mathbf{S}, \mathbf{s}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
St	SN	(fluid mechanics, flow parameter) Strouhal number	$f L / V$	
STIX		(seakeeping, large amplitude motions capsizing) Required stability index value, see ...		1
$S_{u v}$	$S(\mathrm{U}, \mathrm{V})$	(fundamental. coordinate and space related) Generalized moment of a scalar quantity distributed in space	$\begin{aligned} & S_{i j}=S^{0}{ }_{i j} \\ & S_{i, 3+j}=S^{1}{ }_{i j}^{T} \\ & S_{3+i, j}=S^{1}{ }_{i j} \end{aligned}$	
			$S_{3+i, 3+j}=S^{2}{ }_{i j}$	
$S_{\text {W }}$	SAWA	(environmental mechanics, ice) Salinity of water	Weight of dissolved salt per unit weight of saline water	1
$S_{\text {WB }}$	SWB	(planing, semi-displacement vessels) Wetted bottom area, underway	Area bounded by stagnation line, chines or water surface underway and transom	m^{2}
$S_{\text {WBK }}$	SWBK	Wetted surface area of bilge keels		m^{2}
$S_{\text {WHP }}$	SWHP	(planing, semi-displacement vessels) Wetted area underway of planing hull	Principal wetted area bounded by trailing edge, chines and spray root line	m^{2}
$S_{\text {WHE }}$	SWHE	(planing, semi-displacement vessels) Wetted hull area, underway	Total wetted surface of hull underway, including spray area and wetted side area, w/o wetted transom area	m^{2}
$S_{\text {WHS }}$	SWSH	(planing, semi-displacement vessels) Area of wetted sides	Wetted area of the hull side above the chine or the design water line	m^{2}
$S_{\text {WS }}$	SWS	(planing, semi-displacement vessels) Area wetted by spray	Wetted area between design line or stagnation line and spray edge	m^{2}
$S_{x x}$	XXSR	(fundamental, statistical, stochastic) Power spectrum or autospectral power density of a stochastic process	$x x^{R R S R}$	

Version 2011		S, S		
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$S_{x y}$	XYSR	(fundamental, statistical, stochastic) Cross-power spectrum of two stationary stochastic processes	$x y^{R R S R}$	
$S_{\zeta}(\omega, \mu)$	S2ZET	(environmental mechanics,		1
$S_{\theta}(\omega, \mu)$ etc.		waves) Two dimensional spectral density		
$\begin{aligned} & S_{\rho}(f, \theta) \\ & S_{\zeta}(\omega, \mu) \end{aligned}$	STHETA	(environmental mechanics, waves) Directional spectral density		$\begin{array}{r} \mathrm{m}^{2} / \mathrm{Hz} / \\ \mathrm{rad} \end{array}$
s	S	(fundamental. coordinate and space related) Any scalar quantity distributed, maybe singularly, in space		
s	S	(fundamental, time and frequency domain quantity) Complex variable	$a+2 \pi i f$ Laplace transform	1/s
s	SP	(ships, basic quantities) Distance along path		m
s		(seakeeping, large amplitude motions capsizing) Wave steepness		1
S_{F}	SPF	(ships, manoeuvrability, stopping man.) Distance along track, track reach		m
$s_{i j}$	ST(I,J)	(fluid mechanics, flow fields) Total stress tensor	Density of total diffusive momentum flux due to molecular and turbulent exchange	Pa
$s^{\text {V }}{ }_{i j}$	SV(I,J)	(fluid mechanics, flow fields) Viscous stress		Pa
$s_{\text {p }}$		(uncertainty) Pooled experimental standard deviation	Positive square root of s_{p}^{2}	
s_{p}^{2}		(uncertainty) Pooled estimate of variance		1
$s^{2}(\bar{q})$		(uncertainty) Experimental variance of the mean	$s^{2}(\bar{q})=s^{2}\left(q_{k}\right) / n ; \text { estimated }$ variance obtained from a Type A evaluation	1

Version 2011				$\begin{array}{r} \mathrm{S}, \mathbf{S} \\ \text { SI- } \\ \text { Unit } \end{array}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$s(\bar{q})$		(uncertainty) Experimental standard deviation of the mean	Positive square root of $s^{2}(\bar{q})$	1
$s^{2}\left(q_{k}\right)$		(uncertainty) Experimental variance from repeated observations		1
$s\left(q_{k}\right)$		(uncertainty) Experimental standard deviation of repeated observations	Positive square root of $s^{2}\left(q_{k}\right)$	1
$s^{2}\left(\bar{X}_{i}\right)$		(uncertainty) Experimental variance of input mean	From mean \bar{X}_{i}, determined from n independent repeated observations $X_{i, k}$, estimated variance obtained from a Type A evaluation.	1
$s\left(\bar{X}_{i}\right)$		(uncertainty) Standard deviation of input mean	Positive square root of $s^{2}\left(\bar{X}_{1}\right)$	1
$s(\bar{q}, \bar{r})$		(uncertainty) Estimate of covariance of means		1
$s\left(\bar{X}_{i}, \overline{X_{j}}\right)$		(uncertainty) Estimate of covariance of input means		1
S_{V}	SINKV	(ships, performance) Sinkage, dynamic	Change of draft, fore and aft, divided by length	1
s_{χ}	XDS	(fundamental, statistical) Sample deviation of a random quantity	$x^{V S 1 / 2}$ unbiased random estimate of the standard deviation	1

Version 2011				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
T	T	(ships, hull geometry, seakeeping, large amplitude motions capsizing) Draught, moulded, of ship hull		m
T	TC	(ships, basic quantities, ships, seakeeping) Period, Wave period	Duration of a cycle of a repeating or periodic, not necessarily harmonic process	s
T	TIC	(ships, manoeuvrability, seakeeping) Time constant of the 1st order manoeuvring equation		s
T	TH	(ships, propulsor performance) Propeller thrust		N
T	YHA	(seakeeping, large amplitude motions capsizing) Equivalent transverse heeling arm	Heeling moment/ Δ	m
T_{01}	T1	(environmental mechanics, waves) Average period from zeroth and first moment	m_{0} / m_{1}	s
T_{02}	T2	(environmental mechanics, waves) Average period from zeroth and second moment	$\left(m_{0} / m_{2}\right)^{1 / 2}$	S
T_{1}	TIC1	(ships, manoeuvrability, seakeeping) First time constant of manoeuvring equation		s
$T_{1 / 3 d}$	T13D	Significant wave period	By downcrossing analysis	S
$T_{1 / 3 u}$	T13U	Significant wave period	By upcrossing analysis	s
T_{2}	TIC2	(ships, manoeuvrability, seakeeping) Second time constant of manoeuvring equation		S
T_{3}	TIC3	(ships, manoeuvrability, seakeeping) Third time constant of manoeuvring equation		S
$T_{\text {A }}$	TA, TAP	(ships, hull geometry) Draught at aft perpendicular		m

Version				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$T_{\text {AD }}$	TAD, TAPD	(ships, hull geometry) Design draught at aft perpendicular		m
$T_{\text {AW }}$	TAW	(ships, seakeeping) Mean thrust increase in waves		N
$T^{\text {C }}$	CIRCT	(ships, hull geometry) R.E. Froude's draught coefficient	$T / \nabla^{1 / 3}$	1
$T_{\text {C }}$	TC	(fundamental, time and frequency domain quantity) Period of cycle	$1 / f_{\mathrm{C}}$ duration of cycles in periodic, repeating processes	S
$T_{\text {C }}$	TC0	(ACV and SES) Cushion thrust		N
$T_{\text {C }}$	TCAN	(sailing vessels) Draught of canoe body		m
$T_{\text {D }}$	THDU	(ships, propulsor performance) Duct thrust		N
$T_{\text {DP }}$	THDP	(ships, propulsor performance) Ducted propeller thrust		N
$T_{\text {DT }}$	THDT	(ships, propulsor performance) Total thrust of a ducted propeller unit		N
$T_{\text {d }}$	TD	(environmental mechanics, waves) Wave periods by zero down-crossing	Time elapsing between two successive downward crossings of zero in a record	s
$T_{\text {E }}$	TE	(ships, seakeeping) Wave encounter period		S
$T_{\text {EfF }}$	TEFF	(sailing vessels) Effective draught	$F_{\mathrm{H}} /\left(\rho V_{\mathrm{B}}{ }^{2} R\right)^{5}$	m
$T_{\text {F }}$	TF, TFP	(ships, hull geometry) Draught at forward perpendicular		m
$T_{\text {F }}$	TFO	(hydrofoil boats) Foil immersion	Distance between foil chord and mean water surface	m
$T_{\text {FD }}$	TFPD	(ships, hull geometry) Design draught at forward perpendicular		m

Version				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$T_{\text {FD }}$	TFD	(hydrofoil boats) Depth of submergence of apex of a dihedral foil	Distance between foil apex and mean water surface	m
$T_{\text {FM }}$	TFOM	(hydrofoil boats) Mean depth of foil submergence		m
$T_{\text {H }}$	THUL	(ships, hull geometry) Draught of the hull	Maximum draught of the hull without keel or skeg	m
Th	TN	(fluid mechanics, cavitation, fluid mechanics, flow parameter) Thoma number Cavitation number	$\begin{aligned} & \left(H_{\mathrm{U}}-p_{\mathrm{V}} / w\right) / H_{\mathrm{N}} \\ & \left(p_{\mathrm{A}}-p_{\mathrm{V}}\right) / q \end{aligned}$	1
$T_{\text {IA }}$	TIMS	(ice going vessels) Average total thrust in ice		N
$T_{i j}$	$T(\mathrm{I}, \mathrm{J})$	(fundamental. coordinate and space related) Tensor in space referred to an orthogonal system of Cartesian coordinates fixed in the body	$T_{i j}{ }^{\text {s }}+T_{i j}{ }^{\text {a }}$	
$T_{i j}{ }^{\text {A }}$	TAS(I,J)	(fundamental. coordinate and space related) Antisymmetric part of a tensor	$\left(T_{i j}-T_{j i}\right) / 2$	
$T_{i j}{ }^{\text {S }}$	TSY(I,J)	(fundamental. coordinate and space related) Symmetric part of a tensor	$\left(T_{i j}+T_{j i}\right) / 2$	
$T_{i j}{ }^{\text {T }}$	TTR(I, J)	(fundamental. coordinate and space related) Transposed tensor	$T_{j i}$	
$T_{i j} v_{j}$		(fundamental. coordinate and space related) Tensor product	$\sum T_{i j} v_{j}$	
$T_{j x}$	TJX	Jet thrust (can be measured directly in bollard pull condition)		N
TL		(seakeeping, large amplitude motions capsizing) Turning lever		1

Version				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$T_{\text {M }}$	TM, TMS	(ships, hull geometry) Draught at midship	$\left(T_{\mathrm{A}}+T_{\mathrm{F}}\right) / 2$ for rigid bodies with straight keel	m
$T_{\text {MD }}$	TMD, TMSD	(ships, hull geometry) Design draught at midship	$\left(T_{\mathrm{AD}}+T_{\mathrm{FD}}\right) / 2$ for rigid bodies	m
$T_{\text {net }}$		(ships, hull resistance, water jets) Net thrust exerted by the jet system on the hull		N
T_{P}	TP	(environmental mechanics, waves) Period with maximum energy	$2 \pi f_{P}$	
$T_{\text {PBS }}$	TPBS	Bottom Thickness of Strut		m
$T_{\text {R }}$	TR	(environmental mechanics, waves) Duration of record	$1 / f_{\mathrm{R}}$	
$T_{\text {rt }}$	TRT	(environmental mechanics, waves) Return period	The average interval in years between times that a given design wave is exceeded	
$T_{\text {S }}$	TS	(fundamental, time and frequency domain quantity, environmental mechanics, waves) Sample interval, Period of sampling	$1 / f_{s}$, time between two successive samples, Duration between samples	
$T_{\text {T }}$	TTR	(ships, hull geometry) Immersion of transom	Vertical depth of trailing edge of boat at keel below water surface level	m
T_{u}	TU	(environmental mechanics, waves) Wave periods by zero up-crossing	Time elapsing between two successive upward crossings of zero in a record	
$T_{\text {W }}$	TW	(environmental mechanics, waves) Basic wave period	Time between the passage of two successive wave crests past a fixed point. $1 / f_{\mathrm{w}}$	s
$T_{\text {WV }}$	TWV	(environmental mechanics, waves) Wave period estimated from visual observation		s
$T_{\text {xP }}$	TXP	(ships, propulsor performance) Propeller Thrust along shaft axis		N

Version				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$T_{y \mathrm{P}}$	TYP	(ships, propulsor performance) Propeller normal force in y direction in propeller axis		N
T_{z}	TNHE	(ships, seakeeping) Natural period of heave		S
$T_{\text {zP }}$	TZP	(ships, propulsor performance) Propeller normal force in z direction in propeller axis		N
T_{θ}	TNPI	(ships, seakeeping) Natural period of pitch		s
T_{φ}	TNRO	(ships, seakeeping) Natural period of roll		s
t	TI	(fundamental, time and frequency domain quantity, ships, basic quantities) Time	$-\infty \ldots$	S
t	TE	(ships, basic quantities) Temperature		K
t	TT	(ships, hull geometry) Taylor tangent of the area curve	The intercept of the tangent to the sectional area curve at the bow on the midship ordinate	1
t	TM	(ships, propulsor geometry) Blade section thickness		m
t	TMX	(ships, appendage geometry) Maximum thickness of an aerofoil or a hydrofoil	Measured normal to mean line	m
t	YHA	(ships, hydrostatics, stability) Equivalent transverse heeling arm	Heeling moment / 4	m
t	THDF	(ships, performance) Thrust deduction fraction	$\left(T-R_{\mathrm{T}}\right) / T$	1
t		(ships, hull resistance, water jets) Thrust deduction fraction	$(1-t)=\frac{R_{\mathrm{TBH}}}{T_{\text {net }}}$	1

Version				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$t_{p}(v)$		(uncertainty) Inverse Student t	Student t-distribution for v degrees of freedom corresponding to a given probability p	1
$t_{p}\left(V_{\text {eff }}\right)$		(uncertainty) Inverse Student t for effective degrees of freedom	Student t-distribution for $v_{\text {eff }}$ degrees of freedom corresponding to a given probability p in calculation of expanded uncertainty U_{p}	1
t_{180}	TI180	(ships, manoeuvrability, turning circles) Time to reach 180 degree change of heading		
$t_{\text {A }}$	TEAI	(environmental mechanics, ice) Temperature of air		${ }^{\circ} \mathrm{C}$
$t_{\text {a }}$	TIA	(ships, manoeuvrability, zigzag man..) Initial turning time		s
$t_{\text {c1 }}$	TIC1	(ships, manoeuvrability, zigzag man..) First time to check yaw (starboard)		
$t_{\text {c2 }}$	TIC2	(ships, manoeuvrability, zigzag man..) Second time to check yaw (port)		s
$t_{\text {D }}$	TD	(ships, propulsor geometry) Thickness of duct profile		m
$t_{\text {d }}$	DURATN	(environmental mechanics, wind) Wind duration		s
$t_{\text {F }}$	TIF	(ships, manoeuvrability, stopping man.) Stopping time		s
$t_{\text {hc }}$	TCHC	(ships, manoeuvrability, zigzag man..) Period of change in heading		s
$t_{\text {I }}$	TEIC	(environmental mechanics, ice) Local temperature of ice		${ }^{\circ} \mathrm{C}$
t_{j}	TI(J)	(fundamental, time and frequency domain quantity) Sample time instances	$j T_{S}$	

ITTC Symbols

Version				T, t
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
$t_{\text {KL }}$	TRIM	(seakeeping, large amplitude motions capsizing ships, hydrostatics, stability) Static trim	$T_{\mathrm{A}}-T_{\mathrm{F}}-d_{\mathrm{KL}}$	
$t_{\text {r }}$	TIR	(ships, manoeuvrability, zigzag man) Reach time		
$t_{\text {s }}$	TRIM	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Static trim	$T_{\text {A }}-T_{\mathrm{F}}-d_{\mathrm{KL}}$	m
$t_{\text {S }}$	TSTR	(multi-hull vessels) Maximum thickness of strut		m
t_{V}	TV	(ships, performance) Running trim		m
$t_{\text {W }}$	TEWA	(environmental mechanics, ice) Temperature of water		${ }^{\circ} \mathrm{C}$

Version				\mathbf{U}, \mathbf{u}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	Unit
U	U, UN	(ships, basic quantities) Undisturbed velocity of a fluid		m/s
U		Expanded uncertainty	Expanded uncertainty of output estimate y that defines an interval $Y=y \pm U$ having a high level of confidence, equal to coverage factor k times the combined standard uncertainty $u_{c}(y)$ of y : $U=k u_{c}(y)$	
U_{0}		(ships, hull resistance, water jets) Free stream velocity		m/s
U_{10}	U10M	(environmental mechanics, wind) Reference mean wind speed at elevation 10 meters above sea surface	$U_{10}=(10 / z)^{1 / 7} U_{z}^{A}$	m/s
$U_{\text {A }}$	UA	(ships, propulsor performance) Axial velocity induced by propeller		m/s
$U_{\text {A }}$	USHEAR	(environmental mechanics, wind) Wind shear velocity	$C_{10}{ }^{1 / 2} U_{10}$ or $0.71 U_{10}{ }^{1.23}$	m/s
$U_{\text {AD }}$	UADU	(ships, propulsor performance) Axial velocity induced by duct of ducted propeller		m/s
$U_{\text {AP }}$	UAP	(ships, propulsor performance) Axial velocity induced by propeller of ducted propeller		m/s
$U_{\text {C }}$	UC	(ships, manoeuvrability, turning circles) Speed in steady turn		m/s
$U_{\text {e }}$	UE	(fluid mechanics, boundary layers) Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s
$U_{\text {I }}$	UNIN	(fluid mechanics, cavitation) Critical velocity	Free stream velocity at which cavitation inception takes place	m/s

Version				\mathbf{U}, \mathbf{u}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI-
$U_{\text {i }}$	UIN	(fluid mechanics, boundary layers) Instantaneous velocity		m/s
U_{m}	UMR	(fluid mechanics, boundary layers) Time mean of velocity in boundary layer		m/s
U_{p}		Expanded uncertainty associated to confidence level p	Expanded uncertainty of output estimate y that defines an interval $Y=y \pm U_{p}$ having a high level of confidence p, equal to coverage factor k_{p} times the combined standard uncertainty $u_{c}(y)$ of y : $U_{p}=k_{p} u_{c}(y)$	
$U_{\text {R }}$	UR	(ships, propulsor performance) Radial velocity induced by propeller		m/s
$U_{\text {RP }}$	URP	(ships, propulsor performance) Radial velocity induced by propeller of ducted propeller		m/s
$U_{\text {RD }}$	URDU	(ships, propulsor performance) Radial velocity induced by duct of ducted propeller		m/s
$U_{\text {T }}$	UT	(ships, propulsor performance) Tangential velocity induced by propeller		m/s
$U_{\text {TD }}$	UTDU	(ships, propulsor performance) Tangential velocity induced by duct of ducted propeller		m/s
$U_{\text {TP }}$	UTP	(ships, propulsor performance) Tangential velocity induced by propeller of ducted propeller		m/s

Version 2011				$\frac{\mathbf{U}, \mathbf{u}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$U_{z}{ }^{\text {A }}$	UZA	(environmental mechanics, wind) Average wind speed at elevation z above the sea surface	$\begin{aligned} & \left(U_{\mathrm{z}}+u_{z i}\right)^{\mathrm{A}} \\ & U_{\mathrm{Z}}^{\mathrm{A}}=(z / 10)^{1 / 7} U_{10} \text { or } \\ & U_{\mathrm{Z}}^{\mathrm{A}}=U_{10}+U_{\mathrm{A}} \ln (\mathrm{z} / 10) \end{aligned}$	m/s
U_{∞}	UFS	(fluid mechanics, boundary layers) Free-stream velocity far from the surface		m/s
u	$\begin{aligned} & \text { U, VX, } \\ & \text { V1(1), V(1) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
u	U	(fluid mechanics, flow fields) Velocity component in direction of x axis		m/s
u	UFL	(fluid mechanics, boundary layers) Velocity fluctuations in boundary layer		m/s
u	UX, U	(ships, manoeuvrability) Surge velocity, linear velocity along body x axis		m/s
u	U	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
$u_{7 \varphi}$	UJFI	(ships, hull resistance, water jets) Local tangential velocity at station 7		m / s
$u_{c}^{2}(y)$		(uncertainty) Combined variance	Combined variance associated with output estimate y	1
$u_{c}(y)$		(uncertainty) Combined standard uncertainty	Positive square root of $u_{\mathrm{c}}^{2}(y)$	1
$u_{c}(y) /\|y\|$		Relative combined standard uncertainty of output estimate y		
$u_{\text {cA }}(y)$		(uncertainty) Combined standard uncertainty from Type A	From Type A evaluations alone	1

ITTC Computer Name Definition or SI-
Symbol Symbol

$u_{\text {cB }}(y)$		(uncertainty) Combined standard uncertainty from Type B	From Type B evaluations alone	1
$u_{c}\left(y_{i}\right)$		(uncertainty) Combined standard uncertainty	Combined standard uncertainty of output estimate y_{i} when two or more measurands or output quantities are determined in the same measurement	1
${ }_{1} u_{i}^{2}(y)$		(uncertainty) Component of combined variance	$u_{i}^{2}(y) \equiv\left[c_{i} u\left(x_{i}\right)\right]^{2}$	1
${ }_{1} u_{i}(y)$		(uncertainty) Component of combined standard uncertainty	$u_{i}(y) \equiv\left\|c_{i}\right\| u\left(x_{i}\right)$	1
u^{s}	UFLS	(fluid mechanics, boundary layers) Root mean square value of velocity fluctuations		m/s
$u^{2}\left(x_{i}\right)$		(uncertainty) Estimated variance	Associated with input estimate x_{i} that estimates input quantity X_{i}	1
$u\left(x_{i}\right)$		(uncertainty) Standard deviation	Positive square root of $u^{2}\left(x_{i}\right)$	1
$u\left(x_{i}, x_{j}\right)$		(uncertainty) Estimated covariance		1
$u\left(x_{i}\right) / / x_{i} \mid$		(uncertainty) Relative standard uncertainty		1
$\begin{aligned} & u\left(x_{i}, x_{j}\right) / \mid x_{i} \\ & x_{j} \mid \end{aligned}$		Estimated relative covariance	Estimated relative covariance associated with input estimates x_{i} and x_{j}	
$u_{z}, u_{z i}$	UFLUCT	(environmental mechanics, wind) Turbulent wind fluctuations		m/s
u_{τ}	UTAU	(fluid mechanics, boundary layers) Shear (friction) velocity	$(\tau / \rho)^{1 / 2}$	m/s

ITTC Symbols

Version 2011				\mathbf{U}, \mathbf{u}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
\dot{u}	UR	(solid body mechanics, rigid body motions) Rates of change of components of linear velocity relative to body axes		$\mathrm{m} / \mathrm{s}^{2}$
u	UXRT, UR	(ships, manoeuvrability) Surge acceleration, linear acceleration along body x axis	$d u / d t$	$\mathrm{m} / \mathrm{s}^{2}$
u^{+}	UPLUS	(fluid mechanics, boundary layers)	U / u_{τ}	1
$u \times v$	UVPV(I)	(fundamental. coordinate and space related) Vector product	$\varepsilon_{i j k} u_{j} v_{k}$	
u*	USHEAR	(environmental mechanics, wind) Wind shear velocity	$C_{10}{ }^{1 / 2} U_{10}$ or $0.71 U_{10}{ }^{1.23}$	m/s
$\left.\left[u\left(x_{i}\right) / / \mid x_{i}\right]\right]^{2}$		Estimated relative variance	Estimated relative variance associated with input estimate x_{i}	
$\left[u_{c}(y) /\|y\|\right]^{2}$		Relative combined variance	Relative combined variance associated with output estimate y	

Version				\mathbf{U}, \mathbf{u}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	Unit
U	U, UN	(ships, basic quantities) Undisturbed velocity of a fluid		m/s
U		Expanded uncertainty	Expanded uncertainty of output estimate y that defines an interval $Y=y \pm U$ having a high level of confidence, equal to coverage factor k times the combined standard uncertainty $u_{c}(y)$ of y : $U=k u_{c}(y)$	
U_{0}		(ships, hull resistance, water jets) Free stream velocity		m/s
U_{10}	U10M	(environmental mechanics, wind) Reference mean wind speed at elevation 10 meters above sea surface	$U_{10}=(10 / z)^{1 / 7} U_{z}^{A}$	m/s
$U_{\text {A }}$	UA	(ships, propulsor performance) Axial velocity induced by propeller		m/s
$U_{\text {A }}$	USHEAR	(environmental mechanics, wind) Wind shear velocity	$C_{10}{ }^{1 / 2} U_{10}$ or $0.71 U_{10}{ }^{1.23}$	m/s
$U_{\text {AD }}$	UADU	(ships, propulsor performance) Axial velocity induced by duct of ducted propeller		m/s
$U_{\text {AP }}$	UAP	(ships, propulsor performance) Axial velocity induced by propeller of ducted propeller		m/s
$U_{\text {C }}$	UC	(ships, manoeuvrability, turning circles) Speed in steady turn		m/s
$U_{\text {e }}$	UE	(fluid mechanics, boundary layers) Velocity at the edge of the boundary layer at $y=\delta_{995}$		m/s
$U_{\text {I }}$	UNIN	(fluid mechanics, cavitation) Critical velocity	Free stream velocity at which cavitation inception takes place	m/s

Version				\mathbf{U}, \mathbf{u}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI-
$U_{\text {i }}$	UIN	(fluid mechanics, boundary layers) Instantaneous velocity		m/s
U_{m}	UMR	(fluid mechanics, boundary layers) Time mean of velocity in boundary layer		m/s
U_{p}		Expanded uncertainty associated to confidence level p	Expanded uncertainty of output estimate y that defines an interval $Y=y \pm U_{p}$ having a high level of confidence p, equal to coverage factor k_{p} times the combined standard uncertainty $u_{c}(y)$ of y : $U_{p}=k_{p} u_{c}(y)$	
$U_{\text {R }}$	UR	(ships, propulsor performance) Radial velocity induced by propeller		m/s
$U_{\text {RP }}$	URP	(ships, propulsor performance) Radial velocity induced by propeller of ducted propeller		m/s
$U_{\text {RD }}$	URDU	(ships, propulsor performance) Radial velocity induced by duct of ducted propeller		m/s
$U_{\text {T }}$	UT	(ships, propulsor performance) Tangential velocity induced by propeller		m/s
$U_{\text {TD }}$	UTDU	(ships, propulsor performance) Tangential velocity induced by duct of ducted propeller		m/s
$U_{\text {TP }}$	UTP	(ships, propulsor performance) Tangential velocity induced by propeller of ducted propeller		m/s

Version 2011				$\frac{\mathbf{U}, \mathbf{u}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$U_{z}{ }^{\text {A }}$	UZA	(environmental mechanics, wind) Average wind speed at elevation z above the sea surface	$\begin{aligned} & \left(U_{\mathrm{z}}+u_{z i}\right)^{\mathrm{A}} \\ & U_{\mathrm{Z}}^{\mathrm{A}}=(z / 10)^{1 / 7} U_{10} \text { or } \\ & U_{\mathrm{Z}}^{\mathrm{A}}=U_{10}+U_{\mathrm{A}} \ln (\mathrm{z} / 10) \end{aligned}$	m/s
U_{∞}	UFS	(fluid mechanics, boundary layers) Free-stream velocity far from the surface		m/s
u	$\begin{aligned} & \text { U, VX, } \\ & \text { V1(1), V(1) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
u	U	(fluid mechanics, flow fields) Velocity component in direction of x axis		m/s
u	UFL	(fluid mechanics, boundary layers) Velocity fluctuations in boundary layer		m/s
u	UX, U	(ships, manoeuvrability) Surge velocity, linear velocity along body x axis		m/s
u	U	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x		m/s
$u_{7 \varphi}$	UJFI	(ships, hull resistance, water jets) Local tangential velocity at station 7		m / s
$u_{c}^{2}(y)$		(uncertainty) Combined variance	Combined variance associated with output estimate y	1
$u_{c}(y)$		(uncertainty) Combined standard uncertainty	Positive square root of $u_{\mathrm{c}}^{2}(y)$	1
$u_{c}(y) /\|y\|$		Relative combined standard uncertainty of output estimate y		
$u_{\text {cA }}(y)$		(uncertainty) Combined standard uncertainty from Type A	From Type A evaluations alone	1

ITTC Computer Name Definition or SI-
Symbol Symbol

$u_{\text {cB }}(y)$		(uncertainty) Combined standard uncertainty from Type B	From Type B evaluations alone	1
$u_{c}\left(y_{i}\right)$		(uncertainty) Combined standard uncertainty	Combined standard uncertainty of output estimate y_{i} when two or more measurands or output quantities are determined in the same measurement	1
${ }_{1} u_{i}^{2}(y)$		(uncertainty) Component of combined variance	$u_{i}^{2}(y) \equiv\left[c_{i} u\left(x_{i}\right)\right]^{2}$	1
${ }_{1} u_{i}(y)$		(uncertainty) Component of combined standard uncertainty	$u_{i}(y) \equiv\left\|c_{i}\right\| u\left(x_{i}\right)$	1
u^{s}	UFLS	(fluid mechanics, boundary layers) Root mean square value of velocity fluctuations		m/s
$u^{2}\left(x_{i}\right)$		(uncertainty) Estimated variance	Associated with input estimate x_{i} that estimates input quantity X_{i}	1
$u\left(x_{i}\right)$		(uncertainty) Standard deviation	Positive square root of $u^{2}\left(x_{i}\right)$	1
$u\left(x_{i}, x_{j}\right)$		(uncertainty) Estimated covariance		1
$u\left(x_{i}\right) / / x_{i} \mid$		(uncertainty) Relative standard uncertainty		1
$\begin{aligned} & u\left(x_{i}, x_{j}\right) / \mid x_{i} \\ & x_{j} \mid \end{aligned}$		Estimated relative covariance	Estimated relative covariance associated with input estimates x_{i} and x_{j}	
$u_{z}, u_{z i}$	UFLUCT	(environmental mechanics, wind) Turbulent wind fluctuations		m/s
u_{τ}	UTAU	(fluid mechanics, boundary layers) Shear (friction) velocity	$(\tau / \rho)^{1 / 2}$	m/s

ITTC Symbols

Version 2011				\mathbf{U}, \mathbf{u}
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
\dot{u}	UR	(solid body mechanics, rigid body motions) Rates of change of components of linear velocity relative to body axes		$\mathrm{m} / \mathrm{s}^{2}$
u	UXRT, UR	(ships, manoeuvrability) Surge acceleration, linear acceleration along body x axis	$d u / d t$	$\mathrm{m} / \mathrm{s}^{2}$
u^{+}	UPLUS	(fluid mechanics, boundary layers)	U / u_{τ}	1
$u \times v$	UVPV(I)	(fundamental. coordinate and space related) Vector product	$\varepsilon_{i j k} u_{j} v_{k}$	
u*	USHEAR	(environmental mechanics, wind) Wind shear velocity	$C_{10}{ }^{1 / 2} U_{10}$ or $0.71 U_{10}{ }^{1.23}$	m/s
$\left.\left[u\left(x_{i}\right) / / \mid x_{i}\right]\right]^{2}$		Estimated relative variance	Estimated relative variance associated with input estimate x_{i}	
$\left[u_{c}(y) /\|y\|\right]^{2}$		Relative combined variance	Relative combined variance associated with output estimate y	

Version				V, v
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
V	VA	(fluid mechanics, flow fields, sailing vessels) Velocity of a body	$V=v_{i} v_{i}^{1 / 2}$	m/s
V	VO	(ships, basic quantities) Volume		m^{3}
V	DISPVOL	(ships, hull geometry) Displacement volume	$\Delta /(\rho g)=\nabla_{\mathrm{BH}}+\nabla_{\mathrm{AP}}$	m^{3}
V	V	(ships, hull resistance, manoeuvrability, sailing vessels) Linear velocity of origin in body axis, Speed of the model or the ship		m/s
V		(seakeeping, large amplitude motions capsizing) Tank total capacity		m^{3}
V^{0}	V0, OMN	(ships, basic quantities) Rotational velocity	$2 \pi n$	rad/s
V_{i}^{0}	$V 0(\mathrm{I}), V(\mathrm{I})$	(fundamental. coordinate and space related) Zeroth order moments of a vector quantity distributed in space, referred to an orthogonal system of Cartesian coordinates fixed in the body	$\int d v_{i}$	
V_{0}	V0	(ships, manoeuvrability) Approach speed		m/s
V_{0}	V0	(fluid mechanics, flow fields) Velocity of undisturbed flow		m/s
V_{0}		(seakeeping, large amplitude motions capsizing) Speed of craft in the turn - IMO/HSC'2000 Service speed - IMO/IS		m/s
V^{1}	V, V1	(ships, basic quantities) Linear or translatory velocity of a body	$d s / d t$	m/s
$V^{1}{ }_{i}$	V1(I)	(fundamental. coordinate and space related) First order moments of a vector distribution	$\int_{\varepsilon_{i j k} \chi_{j} d v_{k}}$	

Version				V, v
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\underset{\text { Unit }}{\text { SI- }}$
$V_{\text {SP }}$	VSP	(planing, semi-displacement vessels) Spray velocity	Relative velocity between hull and spray in direction of the spray	m/s
V_{T}	VT	(fluid mechanics, lifting surfaces) Resultant velocity of flow approaching a hydrofoil	Taking vortex induced velocities into account	m/s
$V_{\text {tw }}$	VWABS	(sailing vessels) True wind velocity		m/s
V_{u}	V(URT)	(ships, manoeuvrability) Generalized velocity		m/s
\dot{V}_{u}	V(URT)	(ships, manoeuvrability) Generalized acceleration		$\mathrm{m} / \mathrm{s}^{2}$
V_{u}	$V(\mathrm{U})$	(fundamental. coordinate and space related) Generalized vector	$\begin{aligned} & V_{i}=V_{i}^{0} \\ & V_{3+i}=V_{i}^{1} \end{aligned}$	
$V_{\text {WR }}$	VWREL	(ships, hull resistance, manoeuvrability, environmental mechanics, wind, sailing vessels) Relative wind velocity, apparent wind velocity		m/s
$V_{\text {WT }}$	VWABS	(ships, manoeuvrability, environmental mechanics, wind) True wind velocity		m/s
v	UY, V	(ships, manoeuvrability) Sway velocity, linear velocity along body y-axis		m/s
v	V	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis y		m/s
v		(seakeeping, large amplitude motions capsizing) Tank total capacity		m^{3}
v	V	(fluid mechanics, flow fields) Velocity component in direction of y axis		m/s

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$v^{0}{ }_{1}$	$\begin{aligned} & \text { P, OMX, } \\ & \text { V0(1), V(4) } \end{aligned}$	(solid body mechanics, rigid body motions) Rotational velocity around body axis x	rad/s
$v^{0}{ }_{2}$	$\begin{aligned} & \text { Q, OMY, } \\ & \text { V0(2), V(5) } \end{aligned}$	(solid body mechanics, rigid body motions) Rotational velocity around body axis y	rad/s
$v^{0}{ }_{3}$	$\begin{aligned} & \text { R, OMZ, } \\ & \text { V0(3), V(6) } \end{aligned}$	(solid body mechanics, rigid body motions) Rotational velocity around body axis z	rad/s
$v^{1}{ }_{1}$	$\begin{aligned} & \text { U, VX, } \\ & \text { V1(1), V(1) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x	m/s
$v^{1}{ }_{2}$	$\begin{aligned} & \text { V, VY, } \\ & \text { V1(2), V(2) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis y	m/s
$v^{1}{ }_{3}$	$\begin{aligned} & \text { W, VZ, } \\ & \text { V1(3), V(3) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis z	m/s
v_{1}	$\begin{aligned} & \text { U, VX, } \\ & \text { V1(1), V(1) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis x	m/s
v_{1}	VX, V1	(fluid mechanics, flow fields) Velocity component in direction of x, y, z axes	m/s
v_{2}	V1(2), V(2)	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis y	m/s
v_{2}	VY, V2	(fluid mechanics, flow fields) Velocity component in direction of x, y, z axes	m/s
v_{3}	V1(3), V(3)	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis z	m/s

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

(fluid mechanics, flow fields)
Velocity component in direction of x, y, z axes
$\mathrm{V} 0(1), \mathrm{V}(4) \quad$ (solid body mechanics, rigidbody motions) Rotationalvelocity around body axis x

Q, OMY, (solid body mechanics, rigid rad/s
$\mathrm{V} 0(2), \mathrm{V}(5)$ body motions) Rotational velocity around body axis y

R, OMZ, (solid body mechanics, rigid rad/s $\mathrm{V} 0(3), \mathrm{V}(6)$ body motions) Rotational velocity around body axis z

POAI (environmental mechanics, ice) Relative volume of air

Volume of gas pores per unit
(environmental mechanics, ice) Relative volume of

Volume of liquid phase per unit volume of ice brine

POIC (environmental mechanics, $\quad v_{0}=v_{\mathrm{A}}+v_{\mathrm{B}}$
ice) Total porosity of ice
V(I)
(fluid mechanics, flow fields) m/s Velocity
$\mathrm{V}(\mathrm{U}) \quad$ (solid body mechanics, rigid $v_{i}=v_{i}{ }_{i}$
body motions) Components $v_{3+i}=v^{0}{ }_{i}$ of generalized velocity or motion relative to body axes rad/s
(fluid mechanics, flow fields) m/s
Velocity component in direction of x, y, z axes
(seakeeping, large amplitude m/s
motions capsizing) Wind speed used in calculation
(solid body mechanics, rigid m/s body motions) Translatory velocity in the direction of body axis x

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

v_{y}	$\begin{aligned} & \text { V, VY, } \\ & \text { V1(2), V(2) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis y		m/s
v_{z}	$\begin{aligned} & \text { W, VZ, } \\ & \text { V1(3), V(3) } \end{aligned}$	(solid body mechanics, rigid body motions) Translatory velocity in the direction of body axis z		m/s
$u \times v$	UVPV(I)	(fundamental. coordinate and space related) Vector product	$\varepsilon_{i j k} u_{j} v_{k}$	
\dot{v}	VR	(solid body mechanics, rigid body motions) Rates of change of components of linear velocity relative to body axes		$\mathrm{m} / \mathrm{s}^{2}$
\dot{v}	UYRT, VR	(ships, manoeuvrability) Sway acceleration, linear acceleration along body y axis	$d v / d t$	$\mathrm{m} / \mathrm{s}^{2}$

ITTC	Computer	Name	Definition or Explanation	SI-
Symbol	Symbol		Unit	

W	WT
	(ships, basic quantities) Weight (force), gravity force acting on a body

SHIPWT (ships, hydrostatics, stabil- mg
ity, seakeeping, large ampli-
tude motions capsizing)
Ship weight
We WN (fluid mechanics, flow pa- $V^{2} L / \kappa \quad 1$ rameter) Weber number
W_{F} WTF (hydrofoil boats) Weight of N
$W_{\mathrm{L}} \quad$ WTLS (fluid mechanics, cavitation) Weight of material eroded Weight loss from a specimen during a N/s specified time
w

ITTC	Computer	Name	Definition or Explanation
Symbol	Symbol		SI-

$w_{1 \mathrm{~A}}$		(ships, hull resistance, water jets) Width of capture area measured over hull surface at station 1A	m
$W_{\text {F }}$	WFF	(ships, performance) Froude $\left(V-V_{\mathrm{A}}\right) / V_{\mathrm{A}}$ wake fraction	1
w_{Q}	WFTQ	(ships, performance) Torque Propeller speed V_{A} deterwake fraction mined from torque identity	1
w_{T}	WFTT	(ships, performance) Thrust Propeller speed, V_{A}, deterwake fraction mined from thrust identity	1
w	UZRT, WR	(solid body mechanics, rigid $d w / d t$ body motions, ships, manoeuvrability) Heave acceleration, linear acceleration along body z-axis	$\mathrm{m} / \mathrm{s}^{2}$

Version 2011				$\frac{\mathbf{X}, \mathbf{X}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
X		(fundamental, time and frequency domain quantity) Real "valued" function		
X	X	(solid body mechanics, loads) Force in direction of body axis x		Nm
X	X	(ships, unsteady propeller forces) Cylindrical coordinates	Cylindrical system with origin O and longitudinal x-axis as defined before; angular a-(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, r distance measured from the x-axis	m
X	FX	(ships, manoeuvrability, seakeeping) Surge force on body, force along body x axis		N
X		(sailing vessels) Components of resultant force along designated axis		N
X_{1}		(seakeeping, large amplitude motions capsizing) Roll damping coefficients		1
X_{2}		(seakeeping, large amplitude motions capsizing) Roll damping coefficients		1
$X_{\text {CB }}$	ХСВ	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitudinal centre of buoyancy (L_{CB})	Longitudinal distance from reference point to the centre of buoyancy, B such as $\mathrm{X}_{\text {MCF }}$ from Midships	m
$X_{\text {CF }}$	XCF	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Longitudinal centre of flotation (L_{CF})	Longitudinal distance from reference point to the centre of flotation, F such as $\mathrm{X}_{\mathrm{MCF}}$ from Midships	m

ITTC Computer Name Definition or SI

Symbol Symbol
$X_{\text {CG }}$
X_{F}
X_{H}
XH
X_{R}
X_{S}
X_{i}
$X_{i, k}$
X_{u}
X_{u}^{u}
\bar{X}_{i}
XCG

FDIM

XRU

XS
. $i^{\text {th }}$ input quantity
$k^{\text {th }}$ independent repeated observation of X_{i}
(ships, manoeuvrability, seakeeping) Derivative of surge force with respect to surge velocity out-board or outer hinge of attachment point to structure ity (L_{CG})
(environmental mechanics, wind) Dimensionless Fetch spacing between inner and outer side skirt hinges or attachment points to structure
(ships, manoeuvrability, seakeeping) Longitudinal rudder force

XURT
(ships, manoeuvrability, seakeeping) Derivative of surge force with respect to surge acceleration

Estimate of the value of input quantity X_{i}
$i^{\text {th }}$ input quantity on which measurand Y depends NOTE Xi may be the physical quantity or the random variable
$\partial X / \partial u \quad \mathrm{Ns} / \mathrm{m}$
$\partial X / \partial \dot{u}$
$\mathrm{Ns}^{2} / \mathrm{m}$

SIExplanation

Unit
(ships, hydrostatics, stabil- Longitudinal distance from a ity, seakeeping, large ampli- reference point to the centre tude motions capsizing) of gravity, G such as $\mathrm{X}_{\text {MCG }}$ Longitudinal centre of grav- from Midships
(ACV and SES) Horizontal needs clarification
(ACV and SES) Distance of needs clarification m à \qquad

Estimate of the value of input quantity X_{i} equal to the arithmetic mean or average of n independent repeated observation $X_{i, k}$ of X_{i}
ITTC Computer Name Definition or SI

Symbol Symbol

X

X0(1)

X0(2)

X (fundamental. coordinate and space related) Body axes and corresponding Cartesian coordinates
(fundamental, statistical, $\quad x(\zeta, t), y(\zeta, t)$ stochastic) Stationary stochastic process
(fundamental, time and fre- $\quad x(t)$
quency domain quantity)
Values of real quantities
(ships, performance) Load $\quad \eta_{\mathrm{D}} P_{\mathrm{D}} / P_{\mathrm{E}}-1$
fraction in power prediction
Cylindrical system with origin O and longitudinal x-axis as defined before; angular a-(attitude)-coordinate, zero at 12 o'clock position, positive clockwise looking forward, r distance measured from the x-axis
(ships, unsteady propeller Origin O coinciding with the forces) Cartesian coordinates centre of the propeller. The longitudinal x-axis coincides with the shaft axis, positive forward; the trans-verse y axis, positive to port; the third, z-axis, positive upward
Right-hand orthogonal system of coordinates fixed in the body fraction in power prediction
(ships, unsteady propeller forces) Cylindrical coordinates
(fundamental, statistical) $\quad x(\zeta), y(\zeta)$ Random quantities
(fundamental. coordinate Right-hand orthogonal sysand space related) Space tem of coordinates fixed in axes and corresponding Car- relation to the space tesian coordinates
(fundamental. coordinate Right-hand orthogonal sysand space related) Space tem of coordinates fixed in axes and corresponding Car- relation to the space tesian coordinates
(fundamental. coordinate Right-hand orthogonal sys-
m
Explanation
Unit
$\begin{array}{ll}\text { (fundamental. coordinate } & \begin{array}{l}\text { Right-hand orthogonal sys- } \\ \text { and space related) Space } \\ \text { tem of coordinates fixed in }\end{array}\end{array}$ axes and corresponding Car- relation to the space tesian coordinates

Version				$\mathbf{X , X}$
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{gathered} \text { SI- } \\ \text { Unit } \end{gathered}$
χ_{03}	X0(3)	(fundamental. coordinate and space related) Space axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the space	m
χ_{090}	X090	(ships, manoeuvrability, turning circles) Advance at 90° change of heading		m
χ_{0180}	X0180	(ships, manoeuvrability, turning circles) Advance at 180° change of heading		m
$\chi_{0 \mathrm{~F}}$	X0F	(ships, manoeuvrability, stopping man.) Head reach		m
${ }^{0}$ max	XMX	(ships, manoeuvrability, turning circles) Maximum advance		m
${ }_{1}$	$\mathrm{X}(1)$	(fundamental. coordinate and space related) Body axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in the body	m
χ_{2}	X(2)	(fundamental. coordinate and space related) Body axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in the body	m
${ }^{3}$	X(3)	(fundamental. coordinate and space related) Body axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in the body	m
$x^{\text {A }}$	XA	(fundamental, time and frequency domain quantity) Analytic function	$X^{\mathrm{A}}(t)=X(t)+i X^{\mathrm{H}}(t)$	
$x^{\text {A }}$	XMS	(fundamental, statistical) Average or sample mean of a random quantity	$1 / n \sum x_{i}, i=1 \ldots n$ unbiased random estimate of the expectation with $\begin{aligned} & x^{\mathrm{AE}}=x^{E} \\ & x^{\mathrm{VSE}}=x^{V} / n \end{aligned}$	
$\chi_{\text {B }}$	XBDR	(ships, propulsor geometry) Boss to diameter ratio	d_{h} / D	

Version 2011			X, X	
ITTC Symbol	Computer Symbol	Name	DI- x_{CB}	XACB

Version 2011				$\frac{\mathbf{X}, \mathbf{X}}{\text { SI- }} \begin{array}{r} \text { Unit } \end{array}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
χ^{E}	XMR	(fundamental, statistical)	$E(x)$	
		Expectation or population mean of a random quantity		
$\chi_{\text {F }}$	XF	(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow	
χ^{F}	XFT	(fundamental, time and frequency domain quantity) Fourier transform	$X^{\mathrm{F}}(f)=\int X(t) \exp (-i 2 \pi f t) d t$ inverse form: $=\int X^{\mathrm{F}}(f) \exp (-i 2 \pi f t) d t$ if $X(t)=0$ and $\mathrm{a}=0$ then $X^{\mathrm{F}}(f)=X^{\mathrm{L}}(f)$	
$\chi_{\text {F1 }}$	XF(1)	(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow	
$\chi_{\text {F2 }}$	XF(2)	(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow	
$\chi_{\text {F3 }}$	XF(3)	(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow	
$\chi^{\mathrm{F}}{ }_{j}$	XFT(J)	(fundamental, time and frequency domain quantity) Fourier transform of periodic function	$\begin{aligned} & 1 / T_{\mathrm{C}} \int X(t) \exp \left(-i 2 \pi j t / T_{\mathrm{C}}\right) d t \\ & \mathrm{t}=0 \ldots T_{\mathrm{C}} \\ & X^{\mathrm{F}}=\Sigma X^{\mathrm{F}}{ }_{j} \delta\left(f-j / T_{C}\right) \end{aligned}$ inverse form: $X(t)=\Sigma x^{\mathrm{F}}{ }_{j} \exp \left(-i 2 \pi f j T_{\mathrm{C}}\right)$	
x^{H}	XHT	(fundamental, time and frequency domain quantity) Hilbert transform	$X^{\mathrm{H}}(t)=1 / \pi \int X(\tau) /(t-\tau) d \tau$	
x^{HF}	XHF	(fundamental, time and frequency domain quantity) Fourier transform of Hilbert transform	$\begin{aligned} & X^{\mathrm{HF}}(f)=X^{\mathrm{F}}(f)(-i \operatorname{sgn} f) \\ & (1 / t)^{F}=-i \operatorname{sgn} f \end{aligned}$	
χ_{i}	$X(\mathrm{I}), Y(\mathrm{I})$	(fundamental, statistical) Samples of random quantities	$\begin{aligned} i= & 1 \ldots n \\ & n: \text { sample size } \end{aligned}$	

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

x_{i}	X(I)
x_{i}	(ships, seakeeping) Absolute $i=1,2,3$ surge, sway, and displacement of the ship at the reference point heave respectively
	Estimate of input quantity X_{i}
	Estimate of input quantity X_{i} NOTE when x_{i} is deter- mined from the arithmetic mean or average of n inde- pendent repeated observa- tion $x_{i}=\overline{X_{i}}$ $x_{i}=\bar{X}_{i}$

χ_{j}	$X(\mathrm{~J})$	(fundamental, time and frequency domain quantity) Variables for samples values of real quantities	$x\left(t_{j}\right)=\int_{x}(t) \delta\left(t-t_{j}\right) d t$
$x^{\text {L }}$	XLT	(fundamental, time and frequency domain quantity) Laplace transform	$\begin{aligned} & X^{\mathrm{L}}(s)=\int X(t) \exp (-s t) d t \\ & \text { if } X(t<0)=0 \text { then } \\ & =(X(t) \exp (-a t))^{F} \end{aligned}$
$x^{\text {M }}$	XMR	(fundamental, statistical) Expectation or population mean of a random quantity	$E(x)$
$\left(x^{m}\right)^{E}$	XmMR	(fundamental, statistical) mth moment of a random quantity	$\left(x^{m}\right)^{E}$
$x^{\text {MR }}$	XMR	(fundamental, statistical) Expectation or population mean of a random quantity	$E(x)$
$x^{\text {MS }}$	XMS	(fundamental, statistical) Average or sample mean of a random quantity	$1 / n \sum x_{i}, i=1 \ldots n$ unbiased random estimate of the expectation with $\begin{aligned} & x^{A E}=x^{E} \\ & x^{V S E}=x^{V} / n \end{aligned}$
$x^{\text {PD }}$	XPD	(fundamental, statistical) Probability density of a random quantity	$d F_{X} / d x$

ITTC	Computer	Name	Definition or Explanation
Symbol Symbol	SI-	Unit	

$x^{\text {PF }}$	XPF	(fundamental, statistical) Probability function (distribution) of a random quantity	
χ_{P}	XP	(ships, propulsor geometry) Longitudinal propeller position	Distance of propeller centre forward of the after perpendicular
$x^{\text {R }}$	XRT	(fundamental, time and frequency domain quantity) Laurent transform	$X^{\mathrm{R}}(r)=\Sigma x_{j} r^{-j}=X^{\mathrm{DL}}$
$\chi_{\text {R }}$	XRU	(ships, manoeuvrability) Longitudinal position of rudder axis	
$x^{\text {S }}$	XS	(fundamental, time and frequency domain quantity) Single-sided complex spectra	$\begin{aligned} & X^{\mathrm{S}}(f)=X^{\mathrm{F}}(f)(1+\operatorname{sgn} f) \\ & =X^{\mathrm{AF}} \\ & \text { i.e. }=0 \text { for } f<0 \end{aligned}$
$\chi^{\text {S }}{ }_{j}$	$X \mathrm{~S}(\mathrm{~J})$	(fundamental, time and frequency domain quantity) Single-sided complex Fourier series	$X^{\mathrm{F}}{ }_{j}(1+\operatorname{sgn} j)$ line spectra
χ_{u}	X(U)	(ships, seakeeping) Generalized displacement of a ship at the reference point	$u=1 . . .6$ surge, sway, heave, roll, pitch, yaw
x^{V}	XVR, XXVR	(fundamental, statistical) Variance of a random quantity	$x^{2 E}-x^{E 2}$
$x^{\text {VR }}$	XVR, XXVR	(fundamental, statistical) Variance of a random quantity	$x^{2 E}-x^{E 2}$
$x^{\text {VS }}$	$X \mathrm{VS}, \mathrm{XXVS}$	(fundamental, statistical) Sample variance of a random quantity	$\begin{aligned} & 1 /(n-1) \Sigma\left(x_{i}-x^{\mathrm{A}}\right)^{2} \\ & i=1 \ldots n \end{aligned}$ unbiased random estimate of the variance $x^{\text {VSE }}=x^{V}$
$x x^{\text {C }}$	XXCR	(fundamental, statistical, stochastic) Auto-covariance of a stationary stochastic process	$\left(x(t)-x^{E}\right)\left(x(t+\tau)-x^{E}\right)^{E}$

ITTC	Computer	Name	Definition or Symbol	Symbol

$x x^{\text {CR }}$	XXCR	(fundamental, statistical, stochastic) Auto-covariance of a stationary stochastic process	$\left(x(t)-\chi^{E}\right)\left(x(t+\tau)-x^{E}\right)^{E}$
$x x^{\text {MR }}$	XXMR	(fundamental, statistical) Auto-correlation of a random quantity	$x \chi^{E}$
$x x^{\mathrm{R}}$	XXMR	(fundamental, statistical) Auto-correlation of a random quantity	$x x^{E}$
$x x^{\mathrm{RR}}$	XXRR	(fundamental, statistical, stochastic) Auto-correlation of a stationary stochastic process	$\begin{aligned} & x(t) x(t+\tau)^{E}=R_{x x}(\tau) \\ & R_{x x}(\tau)=R_{x x}(-\tau) \end{aligned}$
			$\begin{aligned} & \text { if } x \text { is ergodic: } \quad R_{x x}(\tau)= \\ & x(t) x(t+\tau)^{M R} \end{aligned}$
			$\begin{aligned} & R_{x x}(\tau)=\int S_{x x}(\omega) \cos (\omega \tau) d \tau \\ & \tau=0 \ldots \infty \end{aligned}$
$x x^{\text {s }}$	XXSR	(fundamental, statistical, stochastic) Power spectrum or autospectral power density of a stochastic process	$x x^{\text {RRSR }}$
$x x^{V R}$	XVR, XXVR	(fundamental, statistical) Variance of a random quantity	$x^{2 E}-x^{E 2}$
$x x^{V S}$	$X \mathrm{VS}, \mathrm{XXVS}$	(fundamental, statistical) Sample variance of a random quantity	$\begin{aligned} & 1 /(n-1) \Sigma\left(x_{i}-x^{A}\right)^{2} \\ & i=1 \ldots n \end{aligned}$ unbiased random estimate of the variance $\quad x^{V S E}=x^{V}$
$x y^{\text {C }}$	XYCR	(fundamental, statistical, stochastic) Cross-covariance of two stationary stochastic processes	$\left(x(t)-x^{E}\right)\left(y(t+\tau)-y^{E}\right)^{E}$
$x y^{\text {CR }}$	XYCR	(fundamental, statistical, stochastic) Cross-covariance of two stationary stochastic processes	$\left(x(t)-x^{E}\right)\left(y(t+\tau)-y^{E}\right)^{E}$

ITTC	Computer	Name	Definition or Symbol	Symbol

$x y^{M R}$	XYMR	(fundamental, statistical) Cross-correlation of two random quantities	$x y^{E}$
$x y^{\text {PD }}$	XYPD	(fundamental, statistical) Joint probability density of two random quantities	$\partial^{2} F_{x y} /(\partial x \partial y)$
$x y^{\text {PF }}$	XYPF	(fundamental, statistical) Joint probability function (distribution) function of two random quantities	
$x y^{\text {R }}$	XYMR	(fundamental, statistical) Cross-correlation of two random quantities	$x y^{E}$
$x y^{\text {R }}$	XYRR	(fundamental, statistical, stochastic) Cross-correlation of two stationary stochastic processes	$\begin{aligned} & x(t) y(t+\tau)^{E}=R_{x y}(\tau) \\ & R_{y x}(\tau)=R_{x y}(-\tau) \end{aligned}$ if x, y are ergodic: $R_{x y}(\tau)=x(t) y(t+\tau)^{\mathrm{MR}}$
$x y^{\text {S }}$	$X Y$ SR	(fundamental, statistical, stochastic) Cross-power spectrum of two stationary stochastic processes	$x y^{R R S R}$
$x y^{V}$	$X Y$ VR	(fundamental, statistical) Variance of two random quantities	$x y^{E}-x^{E} y^{E}$
$x y^{\text {VR }}$	$X Y$ VR	(fundamental, statistical) Variance of two random quantities	$x y^{E}-x^{E} y^{E}$

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

FY	(solid body mechanics, loads, ships, manoeuvrabil- ity, seakeeping) Sway force, force in direction of body axis y

Y (sailing vessels) Compo-
nents of resultant force along designated axis

A measurand
Estimated relative uncertainty of standard uncertainty $u\left(x_{i}\right)$ of inputs estimate x_{i}

$Y_{\text {CG }}$	YCG	(ships, hydrostatics, stabil- ity, seakeeping, large ampli- tude motions capsizing) Lat- eral displacement of centre		
Y_{r}	Lateral distance from a ref- of gravity $\left(\mathrm{Y}_{\mathrm{CG}}\right)$	m		
	YR to the centre of		\quad	(ships, manoeuvrability, $\quad \partial / \partial r$
:---				
seakeeping) Derivative of				
sway force with respect to				
yaw velocity	\quad	Ns		
:---				

$\begin{array}{lll}Y_{\mathrm{R}} & \text { YRU } & \begin{array}{l}\text { (ships, manoeuvrability, } \\ \text { seakeeping) Transverse }\end{array}\end{array}$ seakeeping) Transverse rudder force

$Y_{\dot{r}}$	YRRT	(ships, manoeuvrability, seakeeping) Derivative of sway force with respect to yaw acceleration	∂ / $\partial \dot{r}$	Ns ${ }^{2}$
Y_{v}	YV	(ships, manoeuvrability, seakeeping) Derivative of sway force with respect to sway velocity		Ns/m
$Y_{\dot{v}}$	YVRT	(ships, manoeuvrability, seakeeping) Derivative of sway force with respect to sway acceleration	$\partial Y / \partial \dot{V}$	$\mathrm{Ns}^{2} / \mathrm{m}$

ITTC	Computer	Name	Definition or Symbol	Symbol

$Y_{z}(\omega)$		(ships, seakeeping) Amplitude of frequency response function for translatory motions	$\begin{aligned} & z_{a}(\omega) / \zeta_{a}(\omega) \text { or } \\ & z_{a}(\omega) / \eta_{a}(\omega) \end{aligned}$	1
Y_{δ}	YD	(ships, manoeuvrability, seakeeping) Derivative of sway force with respect to rudder angle	$\partial Y / \delta$	N
$Y_{\theta \zeta}(\omega)$		(ships, seakeeping) Amplitude of frequency response function for rotary motions	$\begin{aligned} & \Theta_{a}(\omega) / \zeta_{a}(\omega) \text { or } \\ & \Theta_{a}(\omega) /\left(\omega^{2} /\left(g \zeta_{a}(\omega)\right)\right) \end{aligned}$	1
y	X, Y	(fundamental, statistical, stochastic) Stationary stochastic process	$x(\zeta, t), y(\zeta, t)$	
y	X, Y	(fundamental, statistical) Random quantities	$x(\zeta), y(\zeta)$	
y	Y	(ships, unsteady propeller forces) Cartesian coordinates	Origin O coinciding with the centre of the propeller. The longitudinal x-axis coincides with the shaft axis, positive forward; the trans-verse y axis, positive to port; the third, z-axis, positive upward	m
y	$\begin{aligned} & \mathrm{X}, \mathrm{X}(1) \\ & \mathrm{Y}, \mathrm{X}(2) \\ & \mathrm{Z}, \mathrm{X}(3) \end{aligned}$	(fundamental. coordinate and space related) Body axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in the body	m
y		Estimated of measurand Y or Result of a measurement or Output estimate		
y_{0}	$\begin{aligned} & \mathrm{X} 0, \mathrm{X} 0(1) \\ & \text { Y0, X0(2) } \\ & \text { Z0, X0(3) } \end{aligned}$	(fundamental. coordinate and space related) Space axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the space	m
y_{090}	Y090	(ships, manoeuvrability, turning circles) Transfer at 90° change of heading		m

Version 2011				$\frac{\mathbf{Y}, \mathbf{y}}{\text { SI- }} \text { Unit }$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
y_{0180}	Y0180	(ships, manoeuvrability, turning circles) Tactical diameter (transfer at 180° change of heading)		m
$y_{0 F}$	Y0F	(ships, manoeuvrability,		m
		stopping manoeuvre) Lateral deviation		
$y_{0 \text { max }}$	Y0MX	(ships, manoeuvrability,		m
		turning circles) Maximum		
		transfer		
$y_{0 \text { max }}$	Y0MX	(ships, manoeuvrability, zig-		m
		zag manoeuvre) Maximum		
		transverse deviation		
$y_{\text {CG }}$	YCG	(ships, hydrostatics, stabil-	Lateral distance from a reference point to the centre of gravity, G	m
		ity, seakeeping, large ampli-		
		tude motions capsizing) Lat-		
		eral displacement of centre		
		of gravity ($Y_{\text {CG }}$)		
$y_{\text {D }}$		(seakeeping, large amplitude		m
		motions capsizing) Distance		
		of down flooding opening		
		from gunwale		
$y_{\text {D }}{ }^{\prime}$		(seakeeping, large amplitude		m
		motions capsizing) Distance		
		of down flooding opening		
		off centreline		
$y_{\text {F }}$	YF	(fundamental. coordinate		m
		and space related) Flow	tem of coordinates fixed in	
		axes and corresponding	relation to the flow	
		Cartesian coordinates		
y_{i}	$Y(\mathrm{I})$	(fundamental, statistical)	$i=1 . . . n$	
		Samples of random quantities	where n : sample size	
y_{i}		Estimate of measurand Y_{i}	Estimate of measurand Y_{i}	
			when two or more meas-	
			urands are determined in the	
			same measurement	
y_{P}	YP	(ships, propulsor geometry)	Transverse distance of wing propeller centre from middle line	m
		Lateral propeller position		

ITTC Symbols

Version 2011

ITTC	Computer	Name	Definition or
Symbol	Symbol		Explanation

y^{+}YPLUS | (fluid mechanics, boundary $y u_{\tau} / v$ |
| :--- |
| layers) Non-dimensional
 distance from the wall |

Version 2011				$\frac{\mathbf{Z}, \mathbf{Z}}{\text { SI- }} \begin{array}{r} \text { Unit } \end{array}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
Z	Z, FZ,	(solid body mechanics,		Nm
		loads) Force in direction of		
		body axis z		
Z	NPB	(ships, propulsor geometry) Number of propeller blades		
Z	ZRA	(ships, hydrostatics, stability) Intersection of righting arm with line of action of the centre of buoyancy		
Z	FZ	(ships, manoeuvrability, seakeeping) Heave force on body, force along body z axis		N
Z		(sailing vessels) Components of resultant force along designated axis		N
Z	ZRA	(seakeeping, large amplitude motions capsizing) Intersection of righting arm with line of action of the centre of buoyancy		
Z		(seakeeping, large amplitude motions capsizing) Vertical distance from the centre of A to the centre of the underwater lateral area or approximately to a point at one half the draught - IMO/IS		m
Z		(seakeeping, large amplitude motions capsizing) Vertical distance from the centre of A to the waterline		m
$Z_{\text {CE }}$	ZCE	(sailing vessels) Height of centre of effort of sails above waterline in vertical centre plane		m
Z_{H}	ZH	(ACV and SES) Vertical spacing between inner and outer side skirt hinges or attachment points to structure	needs clarification	m

ITTC Computer Name Definition or SI-

Symbol Symbol
z
z

Z
z
z
NPB

Z (fundamental. coordinate and space related) Body

Right-hand orthogonal system of coordinates fixed in axes and corresponding Car- the body tesian coordinates
(fundamental, time and frequency domain quantity) Complex variable
(environmental mechanics, wind) Height above the sea surface in meters
(ships, propulsor geometry)Number of propeller blades
(ships, unsteady propeller Origin O coinciding with the forces) Cartesian coordinates centre of the propeller. The longitudinal x-axis coincides with the shaft axis, positive forward; the trans-verse y axis, positive to port; the third, z-axis, positive upward
(fundamental. coordinate Right-hand orthogonal sysand space related) Space tem of coordinates fixed in axes and corresponding Car- relation to the space, tesian coordinates
(ships, hull resistance, water jets) Vertical distance of nozzle centre relative to undisturbed surface
(fundamental, time and fre- $\bmod (z)=\operatorname{sqrt}\left(z^{r 2}+z^{i 2}\right)$ quency domain quantity) Amplitude
(fundamental, time and fre- $\quad z^{c}=\operatorname{real}(z)=z^{a} \cos \left(z^{p}\right)$ quency domain quantity)
Real or cosine component
(seakeeping, large amplitude
motions capsizing) Height
above waterline of down
flooding opening

Version 2011				$\frac{\mathbf{Z}, \mathbf{Z}}{\text { SI- }} \begin{array}{r} \text { Unit } \end{array}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
z_{F}	ZF	(fundamental. coordinate and space related) Flow axes and corresponding Cartesian coordinates	Right-hand orthogonal system of coordinates fixed in relation to the flow	m
$z^{\text {i }}$	ZIM	(fundamental, time and frequency domain quantity) Imaginary or sine component	$\operatorname{imag}(z)=z^{a} \sin \left(z^{p}\right)=z^{s}$	
z^{j}	ZCJ	(fundamental, time and frequency domain quantity) Conjugate	$z^{r}-i z^{i}$	
z^{l}	ZLG	(fundamental, time and frequency domain quantity) (Phase) Lag	$-z^{p}$	
z^{p}	ZPH	(fundamental, time and frequency domain quantity) Phase	$\operatorname{arc}(z)=\operatorname{arctg}\left(z^{i} / z^{r}\right)$	
Z_{P}	ZP	(ships, propulsor geometry) Vertical propeller position	Height of propeller centre above base line	
$z^{\text {r }}$	ZRE	(fundamental, time and frequency domain quantity) Real or cosine component	$\operatorname{real}(z)=z^{a} \cos \left(z^{p}\right)=z^{c}$	
$z^{\text {s }}$	ZIM	(fundamental, time and frequency domain quantity) Imaginary or sine component	$z^{s}=\operatorname{imag}(\mathrm{z})=z^{a} \sin \left(z^{p}\right)$	
z_{S}	ZS	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Mean static sinkage	$\left(z_{\text {SF }}+z_{\text {SA }}\right) / 2$	
$z_{S A}$	ZSA	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Static sinkage at AP	Caused by loading	
$z_{\text {SF }}$	ZSF	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Static sinkage at FP	Caused by loading	

ITTC Symbols

Version 2011

ITTC	Computer	Name	Definition or Symbol	Symbol

z_{V}	ZV	(ships, performance) Run- ning sinkage of model or ship	m
$Z_{V A}$	ZVA	(ships, hull resistance) Run- ning sinkage at AP	m
$Z_{V F}$	ZVF	(ships, hull resistance) Run- ning sinkage at FP	m
Z_{VM}	ZVM	(ships, hull resistance) Mean $\left(Z_{\mathrm{VF}}+\mathrm{Z}_{\mathrm{VA}}\right) / 2$ running sinkage	m

ITTC	Computer	Name	Definition or Symbol	Symbol

AA,
(fluid mechanics, lifting sur- Angle between the direction faces) Angle of attack or of undisturbed relative flow incidence and the chord line

AA	(solid body mechanics, rigid body motions) Angular acceleration	$d \omega / d t$	$\mathrm{rad} / \mathrm{s}^{2}$
AT ALFA	(solid body mechanics, rigid body motions) Angle of attack	The angle of the longitudinal body axis from the projection into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the y-axis	rad
AA, ALFA	(fluid mechanics, lifting surfaces) Angle of attack or incidence	Angle between the direction of undisturbed relative flow and the chord line	rad
GC	(fluid mechanics, cavitation) Gas content	Actual amount of solved and undissolved gas in a liquid	ppm
WD	(environmental mechanics, waves) Wave direction		rad
AAPI	(ships, manoeuvrability) Pitch angle	Angle of attack in pitch on the hull	rad
AAZL ALF0	(fluid mechanics, lifting surfaces) Angle of zero lift	Angle of attack or incidence at zero lift	rad
ALFSL	(planing, semi-displacement vessels) Angle of stagnation line	Angle between projected keel and stagnation line a in plane normal to centre plane and parallel to reference line	rad
ALFBAR	(planing, semi-displacement vessels) Barrel flow angle	Angle between barrel axis and assumed flow lines	rad
ALFTW	(hydrofoil boats) Geometric angle of twist		rad
AD	(ships, propulsor geometry) Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
AAEF, ALFE	(fluid mechanics, lifting surfaces) Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced velocities	rad

AA	(solid body mechanics, rigid body motions) Angular acceleration	$d \omega / d t$	$\mathrm{rad} / \mathrm{s}^{2}$
AT ALFA	(solid body mechanics, rigid body motions) Angle of attack	The angle of the longitudinal body axis from the projection into the principal plane of symmetry of the velocity of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the y-axis	rad
AA, ALFA	(fluid mechanics, lifting surfaces) Angle of attack or incidence	Angle between the direction of undisturbed relative flow and the chord line	rad
GC	(fluid mechanics, cavitation) Gas content	Actual amount of solved and undissolved gas in a liquid	ppm
WD	(environmental mechanics, waves) Wave direction		rad
AAPI	(ships, manoeuvrability) Pitch angle	Angle of attack in pitch on the hull	rad
AAZL ALF0	(fluid mechanics, lifting surfaces) Angle of zero lift	Angle of attack or incidence at zero lift	rad
ALFSL	(planing, semi-displacement vessels) Angle of stagnation line	Angle between projected keel and stagnation line a in plane normal to centre plane and parallel to reference line	rad
ALFBAR	(planing, semi-displacement vessels) Barrel flow angle	Angle between barrel axis and assumed flow lines	rad
ALFTW	(hydrofoil boats) Geometric angle of twist		rad
AD	(ships, propulsor geometry) Duct profile-shaft axis angle	Angle between nose-tail line of duct profile and propeller shaft	rad
AAEF, ALFE	(fluid mechanics, lifting surfaces) Effective angle of attack or incidence	The angle of attack relative to the chord line including the effect of induced velocities	rad

AAPI (ships, manoeuvrability) Angle of attack in pitch on rad Pitch angle the hull
AAZL (fluid mechanics, lifting sur- Angle of attack or incidence rad
faces) Angle of zero lift at zero lift
ALF0
ALFSL
(planing, semi-displacement Angle between projected rad vessels) Angle of stagnation keel and stagnation line a in line plane normal to centre plane and parallel to reference line
ALFBAR (planing, semi-displacement Angle between barrel axis rad vessels) Barrel flow angle and assumed flow lines

Version 2008				$\frac{\mathbf{A}, \boldsymbol{\alpha}}{\text { SI- }} \begin{array}{r} \text { Unit } \end{array}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$\alpha_{\text {FB }}$	ANFB	(ships, appendage geometry) Bow fin angle		rad
$\alpha_{\text {FS }}$	ANFS	(ships, appendage geometry) Stern fin angle		rad
α_{G}	AAGE, ALFG	(fluid mechanics, lifting surfaces) Geometric angle of attack or incidence	The angle of attack relative to the chord line neglecting the effect of induced velocities	rad
$\alpha_{\text {H }}$	$\begin{aligned} & \text { AAHY, } \\ & \text { ALFI } \end{aligned}$	(fluid mechanics, lifting surfaces) Hydrodynamic angle of attack	In relation to the position at zero lift	rad
$\alpha_{\text {I }}$	$\begin{aligned} & \text { AAID, } \\ & \text { ALFS } \end{aligned}$	(fluid mechanics, lifting surfaces) Ideal angle of attack	For thin airfoil or hydrofoil, angle of attack for which the streamlines are tangent to the mean line at the leading edge. This condition is usually referred to as "shockfree" entry or "smooth"	rad
$\alpha_{\text {IND }}$	ALFIND	(hydrofoil boats) Downwash or induced angle		rad
α_{M}	ALFM	(hydrofoil boats) Angle of attack of mean lift coefficient for foils with twist		rad
$\alpha_{\text {S }}$	GS	(fluid mechanics, cavitation) Gas content of saturated liquid	Maximum amount of gas solved in a liquid at a given temperature	ppm
$a_{\text {s }}$	GR	(fluid mechanics, cavitation) Gas content ratio	α / α_{S}	1
$\alpha_{\text {s }}$	AFS	(hydrofoil boats) Angle of attack for which flow separation (stall) occurs		rad
$\alpha_{\text {TO }}$	ATO	(hydrofoil boats) Incidence angle at take-off speed		rad

Version 2011				B, $\boldsymbol{\beta}$
ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

β	$\begin{aligned} & \text { DR } \\ & \text { BET } \end{aligned}$	(solid body mechanics, rigid body motions) Angle of drift or side-slip	The angle to the principal plane of symmetry from the velocity vector of the origin of the body axes relative to the fluid, positive in the positive sense of rotation about the z-axis	rad
β	BETE	(fluid mechanics, boundary layers) Equilibrium parameter	$\delta^{*} /\left(\tau_{w} d p / d x\right)$	1
β	BETD	(planing, semi-displacement vessels) Deadrise angle of planing bottom	Angle between a straight line approximating body section and the intersection between basis plane and section plane	rad
β	APSF	(ships, performance) Appendage scale effect factor	Ship appendage resistance divided by model appendage resistance	1
β	AADR	(ships, manoeuvrability) Drift angle	Angle of attack in yaw on the hull	rad
β	BETB	(ships, propulsor performance) Advance angle of a propeller blade section	$\operatorname{arctg}\left(V_{\mathrm{A}} / R \omega\right)$	rad
β_{C}	DRCI	(ships, manoeuvrability, turning circles) Drift angle at steady turning		rad
β_{D}	BD	(ships, propulsor geometry) Diffuser angle of duct	Angle between inner duct tail line and propeller shaft	rad
$\beta_{\text {I }}$	BETI	(ships, propulsor, performance) Hydrodynamic flow angle of a propeller blade section	Flow angle taking into account induced velocity	rad
$\beta_{\text {L }}$	BETAL	(sailing vessels) leeway angle		rad
β_{M}	BETM	(planing, semi-displacement vessels) Deadrise angle at midship section		rad

ITTC	Computer	Name	Definition or Symbol	Symbol

β_{T}	BETT	(planing, semi-displacement vessels) Dead rise angle at transom	rad
β_{WA}	BETWA	(environmental mechanics, wind, sailing vessels) apparent wind angle (relative to boat course)	rad
β_{WR}	ANWIRL	(ships, manoeuvrability) Angle of attack of relative wind	rad
β_{WT}	BETWT	(environmental mechanics, wind, sailing vessels) True wind angle (relative to vessel course) (ships, propulsor performance) Effective advance angle	$\operatorname{arctg~}\left(V_{\mathrm{A}} /(0.7 R \omega)\right)$
β^{*}	BETS		rad

ITTC	Computer	Name	Definition or Symbol	Symbol

Γ	CC	(fluid mechanics, flow fields)	$\int V d s$	$\mathrm{m}^{2} / \mathrm{s}$
		Circulation	along a closed line	
Γ^{n}	CN	(fluid mechanics, flow fields)	$\Gamma /(\pi D V)$	1
		Normalized circulation	π is frequently omitted	
γ	MR	(ships, basic quantities)	Mass density of a substance	1
		Relative mass or weight, in English speaking called specific gravity	divided by mass density of distilled water at $4^{\circ} \mathrm{C}$	
γ	RO	(solid body mechanics, rigid	The angular displacement	rad
	GAMR	body motions) Projected angle of roll or heel	about the x_{0} axis of the principal plane of symmetry from the vertical, positive in the positive sense of rotation about the x_{0} axis	
γ	ANSW	(fluid mechanics, lifting surfaces) Sweep angle		rad
γ	VD	(fluid mechanics, flow fields) Vortex density	Strength per length or per area of vortex distribution	m/s

ITTC	Computer	Name	Definition or Symbol	Symbol

Δ	DISPF	(ships, hydrostatics, stabil- $\quad g \rho \nabla$ ity, seakeeping, large ampli- tude motions capsizing) Displacement (buoyant) force	N
$\Delta_{\text {APP }}$	DISPFAP	(ships, hull geometry) Dis- $\quad g \rho \nabla_{\mathrm{AP}}$ placement force (buoyancy) of appendages (ships, hull geometry) Dis-$\quad g \rho \nabla_{\mathrm{BH}}$	
Δ_{BH}	DISPFBH		
of bare hull			

| ITTC | Computer | Name | Definition or
 Symbol | Symbol |
| :--- | :--- | :--- | :--- | ---: |\quad| Explanation | SI- |
| ---: | :--- |

Δw_{C}	DELWC	(ships, performance) Shipmodel correlation factor with respect to $w_{T, S}$ method formula of ITTC 1978 method	1
δ	DELTT	(fluid mechanics, lifting sur- t / C faces) Thickness ratio of foil section (general)	1
δ	ADCT	(ships, propulsor perform- $n D / V_{\mathrm{A}}$ ance) with n in revs $/ \mathrm{min}, D$ in Taylor's advance coefficient feet, V_{A} in kn	1
δ	D	(ships, hydrostatics, stabil- Prefix to other symbol ity) Finite increment in...	1
δ		(seakeeping, large amplitude motions capsizing) Tank block coefficient	1
δ	ANCS	(ships, manoeuvrability) Angle of a control surface, rudder angle, helm angle	rad
δ_{0}	ANRU0	(ships, manoeuvrability) Neutral rudder angle	rad
δ_{1}	DELS	(fluid mechanics, boundary $\int\left(U_{\mathrm{e}^{-}} U\right) / U_{\mathrm{e}} d y$ layers) Displacement thickness of boundary layer	m
δ_{995}	DEL	(fluid mechanics, boundary layers) Thickness of a boundary layer at $U=0.995 U_{\mathrm{e}}$	m
δB_{C}	DBCV	(ACV and SES) Increase in cushion beam due to water contact	m
$\delta_{\text {FB }}$	ANFB	(ships, manoeuvrability) Bow fin angle	rad
$\delta_{\text {B }}$	DELTB	(fluid mechanics, lifting sur- t_{B} / c_{S} faces) Thickness ratio of trailing edge of struts	1

ITTC	Computer	Name	Definition or
Symbol	Symbol		Explanation

$\delta_{\text {C }}$	HC	(fluid mechanics, cavitation) Cavity height or thickness	Maximum height of a fullydeveloped cavity, normal to the surface and the streamwise direction of the cavity
$\delta_{i j}$	DEL(I,J)	(fundamental. coordinate and space related) Delta operator	$\begin{gathered} +1: i j=11,22,33 \\ 0: \text { if otherwise } \end{gathered}$
$\delta_{\text {EFF }}$	ANRUEF	(ships, manoeuvrability) Effective rudder inflow angle	
$\delta_{\text {F }}$	DELTF	(fluid mechanics, lifting surfaces) Camber ratio of mean line (general)	
$\delta_{\text {F }}$	DELFS	(ships, appendage geometry) Flap angle (general)	Angle between the planing surface of a flap and the bottom before the leading edge
$\delta_{\text {FL }}$	DLTFL	(fluid mechanics, lifting surfaces) Angle of flap deflection	
$\delta_{\text {FR }}$	ANFR	(ships, appendage geometry) Flanking rudder angle	
$\delta_{\text {FRin }}$	ANFRIN	(ships, appendage geometry) Assembly angle of flanking rudders	Initial angle set up during the assembly as zero angle of flanking rudders
$\delta_{\text {FS }}$	ANFS	(ships, manoeuvrability) Stern fin angle	
$\delta_{\text {I }}$	ELIC	(environmental mechanics, ice) Deflection of ice sheet	Vertical elevation of ice surface
$\delta_{\text {L }}$	DELTL	(fluid mechanics, lifting surfaces) Camber ratio of lower side of foil	
$\delta_{\text {MAX }}$	ANRUMX	(ships, manoeuvrability, zigzag manoeuvre) Maximum value of rudder angle	
δ_{R}	ANRU	(ships, appendage geometry, manoeuvrability) Rudder angle	

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

$\delta_{\text {RO }}$	ANRUOR	(ships, manoeuvrability) Rudder angle, ordered	rad
$\delta_{\text {RF }}$	ANRF	(ships, appendage geometry) Rudder-flap angle	rad
$\delta_{\text {S }}$	DELTS	(fluid mechanics, lifting sur- $t_{\mathrm{s}} / c_{\mathrm{S}}$ faces) Thickness ratio of strut	1
$\delta_{\text {STH }}$	DELTT	(fluid mechanics, lifting sur- $t_{\mathrm{S}} / \mathrm{C}_{\mathrm{STH}}$ faces) Theoretical thickness ratio of section	1
$\delta_{\text {s }}$	ANSL	(fluid mechanics, lifting surfaces) Slat deflection angle	rad
δt_{KL}	DTR	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Change in static trim	m
δ_{U}	DELTU	(fluid mechanics, lifting sur- f_{u} / c faces) Camber ratio of upper side	1
δ_{u}	DP(U)	(ships, unsteady propeller $\quad u=1, . ., 6$ forces) Generalized vibra- $\quad u=1,2,3$: linear tory displacement $u=4,5,6: \text { angular }$	m m rad
$\delta_{\text {W }}$	DELWG	(ships, appendage geometry)Angle between the planing surface of a wedge and the Wedtom angle bodge bere the leading edge	rad
δ_{λ}	DLAM	(planing, semi-displacement Effective increase in friction vessels) Dimensionless in- area length-beam ratio due crease in total friction area to spray contribution to drag	1
δ^{*}	DELS	(fluid mechanics, boundary $\int\left(U_{\mathrm{e}}-U\right) / U_{\mathrm{e}} d y$ layers) Displacement thickness of boundary layer	m
$\delta^{* *}$	ENTH	(fluid mechanics, boundary $\quad \int\left(U / U_{\mathrm{e})}\left(1-U^{2} / U_{\mathrm{e}}^{2}\right) d y\right.$ layers) Energy thickness	m
$\dot{\delta}_{u}$	DPVL(U)	(ships, unsteady propeller $\quad u=1, . ., 6$ forces) Generalized vibra- $\quad u=1,2$, 3: linear tory velocity $u=4,5,6$: angular	m / s m / s $\mathrm{rad} / \mathrm{s}$

ITTC Symbols

Version 2011

| ITTC | Computer Name | Definition or |
| :--- | :--- | :--- | :--- |

$\ddot{\delta}_{u}$	DPAC(U)	(ships, unsteady propeller forces) Generalized vibra-	$u=1, . ., 6$ tory acceleration
	$u=4,2,3:$ linear	$\mathrm{m} / \mathrm{s}^{2}$	
		$\mathrm{~m} / \mathrm{s}^{2}$	
		$\mathrm{rad} / \mathrm{s}^{2}$	

Version 2011				$\frac{\mathbf{E}, \boldsymbol{\varepsilon}}{\substack{\text { SI- } \\ \text { Unit }}}$
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
ε	EPSLD	(fluid mechanics, lifting surfaces) Lift-Drag ratio	L/D	1
ε	EPSG	(ships, hull resistance) Resistance-displacement ratio in general	R / Δ	1
ε	PSIBP	(ships, propulsor geometry) Propeller axis angle measured to body fixed coordinates	Angle between reference line and propeller shaft axis	rad
ε_{F}	EPSLDF	(hydrofoil boats) Lift/ Drag ratio of foil	L / D	1
ε_{i}	EWPH(I)	Phases of harmonic components of a periodic wave	$\eta^{\text {FSp }}$	rad
$\varepsilon_{i j k}$	EPS(I,J,K)	(fundamental. coordinate and space related) Epsilon operator	$\begin{aligned} & +1: i j k=123,231,312 \\ & -1: i j k=321,213,132 \\ & 0: \text { if otherwise } \end{aligned}$	
$\varepsilon_{\text {I }}$	STIC	(environmental mechanics, ice) Ice strain	Elongation per unit length	1
ε_{R}	EPSR	(ships, hull resistance) Residuary resistancedisplacement ratio	$R_{\mathrm{R}} / \Delta^{\prime}$	1
$\varepsilon_{\text {SH }}$	EPSSH	(planing, semi-displacement vessels) Shaft angle	Angle between shaft line and reference line (positive, shaft inclined downwards)	rad
$\varepsilon_{\mathrm{WL}}$	EPSWL	(planing, semi-displacement vessels) Wetted length factor	$L_{\mathrm{M}} / L_{\text {WL }}$	1
$\varepsilon_{\text {WS }}$	EPSWS	(planing, semi-displacement vessels, ACV and SES) Wetted surface area factor, wetted surface factor	$S / S_{0,} S_{\text {SHC }} / S_{\text {SH0 }}$	1
$\dot{\varepsilon}_{\text {I }}$	STRTIC	(environmental mechanics, ice) Ice strain rate	$\partial 8 / \partial$	1/s

Version				Z, ${ }^{\text {L }}$
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
ζ		(fundamental, statistical, stochastic) Outcome of a random "experiment"		
ζ	DW	(environmental mechanics, waves) Instantaneous wave depression	z-axis positive vertical down, zero at mean water level	m
ζ_{13}	ZETA13	(ships, hull resistance, water jets) Inlet duct loss coefficient:	$\frac{E_{3}-E_{1}}{\frac{1}{2} \rho U_{0}^{2}}$	1
ζ_{57}	ZETA57	(ships, hull resistance, water jets) Nozzle duct loss coefficient:	$\frac{E_{7}-E_{5}}{\frac{1}{2} \rho \bar{u}_{\mathrm{e} 6}^{-2}}$	1
ζ_{A}	WAMP	(environmental mechanics, waves) Wave amplitude	Radius of orbital motion of a surface wave particle	m
ζ_{C}	ZETAC	(ACV and SES) Height of cushion generated wave above mean water plane at leading edge side of the skirt		m
$\zeta_{i j}$		(ships, hull resistance, water jets) Energy loss coefficient between station i and j		1

ITTC	Computer	Name	Definition or Symbol	Symbol

η	EW	(ships, hull resistance, environmental mechanics, waves) Instantaneous wave elevation at a given location	z-axis positive vertical up, zero at mean water level;	m
η	EF, ETA	(ships, basic quantities) Efficiency	Ratio of powers	
η_{0}		(ships, hull resistance, water jets) Free stream efficiency:	$\eta_{\mathrm{P}} \eta_{\text {duct }} \eta_{\mathrm{I}}$	1
$\eta_{\text {APP }}$	ETAAP	(ships, performance) Appendage efficiency	$P_{\text {EwoAPP }} / P_{\text {EwAPP }}, R_{\text {TBH }} / R_{\text {T }}$	1
$\eta^{a}{ }_{i}$	EWAM(I)	(environmental mechanics, waves) Amplitudes of harmonic components of a periodic wave	$\eta^{\text {FSa }}$	m
$\eta_{\text {B }}$	ETAB, EFTP	(ships, performance) Propeller efficiency behind ship	$P_{\mathrm{T}} / P_{\mathrm{D}}=T V_{\mathrm{A}} /(Q \omega)$	1
η_{C}	EC	(environmental mechanics, waves) Maximum of elevations of wave crests in a record		m
η_{D}	ETAD, EFRP	(ships, performance, hull resistance, water jets) Propulsive efficiency or quasipropulsive coefficient	$P_{\mathrm{E}} / P_{\mathrm{D}}=P_{\mathrm{R}} / P_{\mathrm{P}}$	1
$\eta_{\text {duct }}$		(ships, hull resistance, water jets) Ducting efficiency:	$\frac{P_{\mathrm{JSE}}}{P_{\mathrm{PE}}}$	1
$\eta_{\text {el }}$		(ships, hull resistance, water jets) Energy interaction efficiency:	$\frac{P_{\mathrm{JSE} 0}}{P_{\mathrm{JSE}}}$	1
η_{G}	ETAG, EFGP	(ships, performance, basic quantities) Gearing efficiency		1
η_{H}	ETAH, EFRT	(ships, performance) Hull efficiency	$\begin{aligned} & P_{\mathrm{E}} / P_{\mathrm{T}}=P_{\mathrm{R}} / P_{\mathrm{T}} \\ & =(1-t) /(1-w) \end{aligned}$	1

Version 2011				\mathbf{H}, η SI- Unit
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$\eta_{\text {I }}$	EFID	(ships, propulsor performance) Ideal propeller efficiency	Efficiency in non-viscous fluid	
$\eta_{\text {I }}$		(ships, hull resistance, water jets) Ideal efficiency, equivalent to jet efficiency in free stream conditions	$\frac{P_{\text {TE } 0}}{P_{\mathrm{JSE} 0}}$	
$\eta_{\text {ID }}$	EFDIC	(ice going vessels) Propulsive efficiency in ice	$R_{\text {IT }} V /\left(2 \pi n_{\text {IA }} Q_{\text {IA }}\right)$	
$\eta_{\text {İE }}$	ERIC	(ice going vessels) Relative propulsive efficiency in ice	$\eta_{\text {ID }} / \eta_{\mathrm{D}}$	
$\eta_{\text {INT }}$		(ships, hull resistance, water jets) Total interaction efficiency:	$\frac{\eta_{\mathrm{eI}}}{\eta_{\mathrm{mI}}}(1-t)$	1
$\eta_{\text {inst }}$	ETAIN	(ships, hull resistance, water jets) Installation efficiency to account for the distorted flow delivered by the jet intake to the pump		1
$\eta_{\text {jet }}$		(ships, hull resistance, water jets) Momentum or jet efficiency:	$\frac{P_{\mathrm{TE}}}{P_{\mathrm{JSE}}}$	
$\eta_{\text {JP }}$	EFJP	(ships, propulsor performance) Propeller pump or hydraulic efficiency	$P_{\mathrm{J}} / P_{\mathrm{D}}=P_{\mathrm{J}} / P_{\mathrm{P}}$	
$\eta_{\text {JPO }}$	$\begin{aligned} & \text { ZET0, } \\ & \text { EFJP0 } \end{aligned}$	(ships, propulsor performance) Propeller pump efficiency at zero advance speed, alias static thrust coefficient	$T /(\rho \pi / 2)^{1 / 3} /\left(P_{\mathrm{D}} D\right)^{2 / 3}$	
$\eta_{\text {JS }}$		(ships, hull resistance, water jets) Jet system efficiency:	$\frac{P_{\mathrm{JSE}}}{P_{\mathrm{D}}}$	
η_{M}	ETAM	Mechanical efficiency of transmission between engine and propeller	$P_{\mathrm{D}} / P_{\mathrm{B}}$	
$\eta_{\text {mI }}$		(ships, hull resistance, water jets) Momentum interaction efficiency:	$\frac{T_{\text {net0 }}}{T_{\text {net }}}$	

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

η_{0}	ETAO, EFTPO	(ships, propulsor performance, performance) Propeller efficiency in open water	$P_{\mathrm{T}} / P_{\mathrm{D}}=T V_{\mathrm{A}} /(Q \omega)$ all quantities measured in open water tests	1
η_{P}	ETAP	(ships, performance) Propulsive efficiency coefficient	$P_{\mathrm{E}} / P_{\mathrm{B}}$	1
η_{P}	ETAP	(ships, hull resistance, water jets) Pump efficiency	$\frac{P_{\mathrm{PE}}}{P_{\mathrm{D}}}$	1
$\eta_{\mathrm{P} 0}$		(ships, hull resistance, water jets) Pump efficiency from a pump loop test		1
$\eta^{p}{ }_{i}, \varepsilon_{i}$	EWPH(I)	(environmental mechanics, waves) Phases of harmonic components of a periodic wave	η^{FSp}	rad
η_{R}	ETAR, EFR0	(ships, performance) Relative rotative efficiency	$\eta_{\mathrm{B}} / \eta_{0}$	1
η_{s}	ETAS, EFPS	(ships, performance) Shafting efficiency	$P_{\mathrm{D}} / P_{\mathrm{S}}=P_{\mathrm{P}} / P_{\mathrm{S}}$	1
$\eta_{\text {T }}$	ET	(environmental mechanics, waves) Wave trough depression	Negative values!	m
η_{T}	ET	(environmental mechanics, waves) Elevations of wave troughs in a record	Negative values!	m
$\eta_{\text {TJ }}$	EFTJ	(ships, propulsor performance) Propeller jet efficiency	$2 /\left(1+\left(1+C_{T h}\right)^{1 / 2}\right)$	1
$\eta_{\text {TP0 }}$	ETA0, EFTP0	(ships, propulsor performance) Propeller efficiency in open water	$P_{\mathrm{T}} / P_{\mathrm{D}}=T V_{\mathrm{A}} /(Q \omega)$ all quantities measured in open water tests	1

ITTC	Computer	Name	Definition or Explanation
Symbol	Symbol		SI-

Θ	THETA	(fluid mechanics, boundary layers) Momentum thickness	$\int\left(U / U_{e}\right)\left(1-U / U_{e}\right) d y$	m
θ	$\begin{aligned} & \text { X(5), TR, } \\ & \text { TETP } \end{aligned}$	(solid body mechanics, rigid body motions) Angle of pitch or trim	Positive in the positive sense of rotation about the y-axis	rad
θ	CWD	(environmental mechanics, waves) Component wave direction		rad
θ	PI	(ships, manoeuvrability) Pitch angle		rad
θ	RAKA	(ships, propulsor geometry) Angle of rake		rad
θ_{0}	TRIMS	(planing, semi-displacement vessels) Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan ^{-1}\left(\left(z_{\mathrm{SF}}-\mathrm{Z}_{\mathrm{SA}}\right) / L\right)$	rad
$\theta_{\text {B }}$	TETB	(ACV and SES) Bag contact deformation angle		rad
θ_{c}		(seakeeping, large amplitude motions capsizing) Capsizing angle under the action of a gust of wind IMO/IS		rad
$\theta_{\text {D }}$	TRIMV	(ships, hull resistance, planing, semi-displacement vessels) Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan ^{-1}\left(\left(z_{V F}-Z_{V A}\right) / L\right)$	rad
$\theta_{\text {DH }}$	DIHED	(hydrofoil boats) Dihedral angle		rad
$\theta_{\text {DWL }}$	TRIMDWL	(planing, semi-displacement vessels) Running trim angle based on design waterline	Angle between design waterline and running waterline (positive bow up)	rad
$\theta_{\text {EXT }}$	TEMX	(ships, propulsor geometry) Skew angle extent	The difference between maximum and minimum local skew angle	rad
θ_{F}	TETF	(ACV and SES) Finger outer face angle		rad

Version				$\Theta, \boldsymbol{\theta}$
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
$\theta_{\text {f }}$	HEELANGF	(seakeeping, large amplitude motions capsizing) Heel angle at flooding		rad
$\theta_{\text {m }}$	MWD THETAMOX	(environmental mechanics, waves) Mean or dominant wave direction		rad
$\theta_{\text {n }}$		(ships, hull resistance, water jets) Jet angle relative to the horizontal at the nozzle (station 6)		rad
$\theta_{\text {S }}$	TRIMS	(ships, hydrostatics, stability, planing, semi-displacement vessels, seakeeping, large amplitude motions capsizing) Static trim angle	Angle between ship design waterline and actual water line at rest (positive bow up) $\tan ^{-1}\left(\left(Z_{\mathrm{SF}}-Z_{\mathrm{SA}}\right) / L\right)$	rad
$\theta_{\text {s }}$	TETS	(ships, propulsor geometry) Skew angle	The angular displacement about the shaft axis of the reference point of any blade section relative to the generator line measured in the plane of rotation. It is positive when opposite to the direction of ahead rotation	rad
θ_{V}	TRIMV	(ships, hull resistance, planing, semi-displacement vessels) Running (dynamic) trim angle	Angle between actual water line at rest and running water line (positive bow up) $\tan ^{-1}\left(\left(z_{V F}-Z_{V A}\right) / L\right)$	rad
$\theta_{\text {W }}$	TETW	(ACV and SES) Slope of mean water plane for surface level beneath cushion periphery		rad
$\theta_{\text {W }}$	TETWI	(environmental mechanics, wind) Wind direction		rad
θ^{*}	ENTH	(fluid mechanics, boundary layers) Energy thickness	$\int(U / U e)\left(1-U^{2} / U_{e}^{2}\right) d y$	m

ITTC Symbols

Version 2011

 I, 1ITTC Computer Name Definition or SI-
Symbol
Symbol
Explanation
Unit

ITTC Symbols

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

K	K	(fluid mechanics, boundary layers) von Karman constant	1
κ	CK	(fluid mechanics, flow pa- rameter) Kinematic capil- larity	σ / ρ
κ	WN	(environmental mechanics, $\quad 2 \pi / L_{\mathrm{W}}=\omega^{2} / g$ waves) Wave number	$\mathrm{m}^{3} / \mathrm{s}^{2}$
κ_{S}	KS	(ships, propulsor perform- ance) Roughness height of propeller blade surface	$1 / \mathrm{m}$
		m	

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

Λ	AS	(fluid mechanics, lifting surfaces) Aspect ratio	b^{2} / A	1
Λ	PRGR	(fluid mechanics, boundary layers) Pressure gradient parameter	$\delta_{995} /\left(v d U_{e} / d x\right)$	1
Λ		Tuning factor	$\Lambda_{s}=\frac{\omega_{E}}{\omega_{z}} \quad \Lambda_{\theta}=\frac{\omega_{E}}{\omega_{\theta}} \quad \Lambda_{\varphi}=\frac{\omega_{E}}{\omega_{\varphi}}$ or $\Lambda_{z}=\frac{T_{z}}{T_{\varepsilon}} \quad \Lambda_{\theta}=\frac{T_{\theta}}{T_{\varepsilon}} \quad \Lambda_{b}=\frac{T_{e}}{T_{E}}$	1
$\Lambda_{\text {FR }}$	ASRF	(ships, appendage geometry) Flanking rudder aspect ratio		1
$\Lambda_{\text {R }}$	ASRU	(ships, appendage geometry, manoeuvrability) Rudder aspect ratio	$b^{2} / A, b_{\mathrm{R}}{ }^{2} / A_{\mathrm{R}}, b_{\mathrm{R}}{ }^{2} / A_{\mathrm{RT}}$	1
λ	TA	(fluid mechanics, lifting surfaces) Taper ratio	$c_{\text {t }} / c_{r}$	1
λ	SC	(ships, basic quantities, ships, hull geometry) Scale ratio, Linear scale of ship model	Ship dimension divided by corresponding model dimension $\begin{aligned} \lambda & =L_{\mathrm{S}} / L_{\mathrm{M}}=B_{\mathrm{S}} / B_{\mathrm{M}} \\ & =T_{\mathrm{S}} / T_{\mathrm{M}} \end{aligned}$	1
λ	ADR	(ships, propulsor performance) Advance ratio of a propeller	$V_{\mathrm{A}} /(n D) / \pi=J / \pi$	1
$\lambda_{\text {d }}$	LD	(environmental mechanics, waves) Wave length by zero down-crossing	The horizontal distance between adjacent down crossing in the direction of advance	m
$\lambda_{\text {FR }}$	TAFR	(ships, appendage geometry) Flanking rudder taper		1
$\lambda_{\text {R }}$	TARU	(ships, appendage geometry) Rudder taper	$c_{\mathrm{R}} / c_{\mathrm{T}}$	1
λ_{u}	LU	(environmental mechanics, waves) Wave length by zero up-crossing	The horizontal distance between adjacent up crossing in the direction of advance	m

ITTC Symbols

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

λ_{W}	LW	(environmental mechanics, waves) Wave length	The horizontal distance be- tween adjacent wave crests in the direction of advance
λ_{W}	LAMS	(planing, semi-displacement vessels) Mean wetted length- beam ratio	m

ITTC	Computer	Name	Definition or Explanation	SI- Symbol

μ	VI	(fluid mechanics, flow parameter) Viscosity		kg/ms
μ	CWD	(environmental mechanics, waves) Component wave direction		rad
μ	PMVO	(ships, hydrostatics, stability, seakeeping, large amplitude motions capsizing) Volumetric permeability	The ratio of the volume of flooding water in a compartment to the total volume of the compartment	1
μ		(ships, seakeeping) Wave encounter angle	Angle between ship positive x axis and positive direction of waves (long crested) or dominant wave direction (short crested)	rad
μ_{1}	POIIC	(environmental mechanics, ice) Poisson's ratio of ice		1
μ_{p}		Expectation or mean of the probability distribution	Expectation or mean of the probability distribution of random-varying quantity q	
μ_{x}	XMR	(fundamental, statistical) Expectation or population mean of a random quantity	$E(x)$	
μ	WD	Wave direction	The angle between the direction of a component wave and the x_{0} axis	rad

ITTC Symbols

ITTC	Computer	Name	Definition or
Symbol	Symbol		Explanation

\(\left.$$
\begin{array}{lll}v & \text { VK } & \begin{array}{l}\text { (fluid mechanics, flow } \\
\text { parameter) Kinematic } \\
\text { viscosity }\end{array} \\
v & \begin{array}{l}\text { Degrees of freedom } \\
\text { (general) }\end{array}
$$ \& \mathrm{m}^{2} / \mathrm{s}

v i \& Effective degrees of freedom Effective degrees of freedom

of u_{c}(y) used to obtain t_{p}\left(v_{eff}\right)

for calculating expanded

uncertainty U_{p}\end{array}\right]\)| Degrees of freedom, or |
| :--- |
| effective degrees of freedom |
| of standard uncertainty u(xi) |
| of input estimate xi |

ITTC Symbols

Version 2011

ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

ITTC Symbols

Version 2011		O, o		
ITTC	Computer	Name	Definition or Explanation	SI-
Symbol	Symbol			Unit

ITTC Symbols

Version 2011

Π, π
ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit

π

PI
Circular constant
3.1415926535

1

ITTC	Computer	Name	Definition or Explanation	SI- Symbol
Symbol				

ρ	DN, RHO	(fluid mechanics, flow parameter, ships, basic quantities, seakeeping, large amplitude motions capsizing, hull resistance, water jets) Mass density of fluid	$d m / d V$	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {A }}$	DNA, RHOA	(ACV and SES, seakeeping, large amplitude motions capsizing) Mass density of air	Mass of air per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {I }}$	DNIC	(environmental mechanics, ice) Mass density of ice	Mass of ice per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {SN }}$	DNSN	(environmental mechanics, ice) Mass density of snow	Mass of snow per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {W }}$	DNWA	(environmental mechanics, ice) Mass density of water		$\mathrm{kg} / \mathrm{m}^{3}$
ρ_{Δ}	DNWI	(environmental mechanics, ice) Density difference	$\rho_{\Delta}=\rho_{\mathrm{W}}-\rho_{\mathrm{I}}$	$\mathrm{kg} / \mathrm{m}^{3}$

ITTC Computer Name Definition or SI-
σ
σ
σ
σ
σ
σ_{CI}
$\sigma_{\text {FI }}$
$\sigma_{\text {I }}$
$\sigma_{\text {TI }}$
σ_{V}
σ_{x}
σ_{θ}
σ
σ_{CI}
CA
CNPC
SN, SIGS
FC
(fluid mechanics, flow parameter) Capillarity

Surface tension per unit
$\mathrm{kg} / \mathrm{s}^{2}$
(fluid mechanics, cavitation) $\left(p_{\mathrm{A}}-p_{\mathrm{C}}\right) / q$1

Cavitation number
(ships, basic quantities) Pa
Normal stress
(environmental mechanics, $2 \pi f_{\mathrm{W}}=2 \pi / T_{\mathrm{W}} \quad \mathrm{rad} / \mathrm{s}$ waves) Circular wave frequency

XDR (fundamental, statistical) $\quad x^{V R^{1 / 2}}$
Standard deviation of a random quantity
DIRSF (environmental mechanics, $S(f, \theta)=S(f) D_{\mathrm{x}}(f, \theta)$ where rad

Standard deviation of a probability distribution

SCIC (environmental mechanics, ice) Compressive strength of ice

SFIC (environmental mechanics,
Standard deviation of a probability distribution, equal to the positive square root of σ^{2}
ice
ice) Flexural strength of ice
(fluid mechanics, cavitation)
Inception cavitation number
SNIC (environmental mechanics,
ice) Tensile strength of ice
CNPV (fluid mechanics, cavitation) $\left(p_{\mathrm{A}}-p_{\mathrm{V}}\right) / q$
Vapour cavitation number
DIRSF
SIGMAOX
waves) Directional spreading function
$\int_{0}^{2 \pi} D_{\mathrm{x}}(f, \theta) d \theta=1$

Standard deviation of \bar{q}, equal to the positive root of $\sigma^{2}(\bar{q})$

$\sigma[s(\bar{q})]$	Standard deviation of experimental standard deviation $s(\bar{q})$ of \bar{q}, equal to the positive square root of $\sigma^{2}[s(\bar{q})]$	
σ^{2}	Variance of a probability	Variance of a probability distribution of (for example) a randomly-variing quantity q, estimated by $s^{2}\left(q_{k}\right)$
$\sigma^{2}(\bar{q})$	Variance of \bar{q}	Variance of \bar{q}, equal to $\sigma^{2} /$ n, estimated by $s^{2}(\bar{q})=\frac{s^{2}\left(q_{k}\right)}{n}$
$\sigma^{2}[s(\bar{q})]$	Variance of experimental standard deviation $s(\bar{q})$ of \bar{q}	

ITTC Symbols

Version 2011		Y, v		
ITTC	Computer	Name	Definition or Symbol	Symbol

Version				Φ, φ
ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
ϕ	HEELANG	(seakeeping, large amplitude motions capsizing) Heel angle		rad
φ	$\begin{aligned} & \text { X(4), RO, } \\ & \text { PHIR } \end{aligned}$	(solid body mechanics, rigid body motions) Angle of roll, heel or list	Positive in the positive sense of rotation about the x-axis	rad
φ	HEELANG	(ships, hydrostatics, stability) Heel angle		rad
φ	RO	(ships, manoeuvrability) Roll angle		rad
ϕ_{0}		(seakeeping, large amplitude motions capsizing) Heel angle during offset load tests		rad
$\phi_{0(\text { PMT })}$		(seakeeping, large amplitude motions capsizing) Maximum permitted heel angle during ...		rad
$\phi_{0 \text { (REQ) }}$		(seakeeping, large amplitude motions capsizing) Maximum permitted heel angle during ...		rad
ϕ_{D}		(seakeeping, large amplitude motions capsizing) Actual down flooding angle according to ...		rad
$\phi_{\text {D(REQ) }}$		(seakeeping, large amplitude motions capsizing) Required down flooding angle, see...		rad
$\phi_{D C}$		(seakeeping, large amplitude motions capsizing) Down flooding angle to non-quick draining cockpits		rad
$\phi_{\text {DH }}$		(seakeeping, large amplitude motions capsizing) Down flooding angle to any main access hatchway		rad

Version 2011				Φ, φ SI- Unit
ITTC	Computer	Name	Definition or	
Symbol	Symbol		Explanation	
$\phi_{\text {F }}$	HEELANGF	(ships, hydrostatics, stability seakeeping, large amplitude motions capsizing) Heel angle at flooding		rad
$\phi_{G Z M A X}$		(seakeeping, large amplitude motions capsizing) Angle of heel at which maximum righting moment occurs		rad
ϕ_{m}		Heel angle corresponding to the maximum of the statical stability curve		rad
ℓ_{R}		(seakeeping, large amplitude motions capsizing) Assumed roll angle in a seaway		rad
ϕ Vs	HEELANGV	(ships, hydrostatics, stability) Heel angle for vanishing stability		rad
ϕ_{w}		(seakeeping, large amplitude motions capsizing) Heel angle due to calculation wind		rad
φ	PHIP	(ships, propulsor geometry) Pitch angle of screw propeller	$\operatorname{arctg}(P /(2 \pi R))$	rad
φ	PO	(fluid mechanics, flow fields) Potential function		$\mathrm{m}^{2} / \mathrm{s}$
φ_{F}	PHIF	(ships, propulsor geometry) Pitch angle of screw propeller measured to the face line		rad
$\varphi_{\text {SP }}$	PHISP	(planing, semi-displacement vessels) Spray angle	Angle between stagnation line and keel (measured in plane of bottom)	rad

ITTC Symbols

Version 2011
\mathbf{X}, χ
ITTC Computer Name Definition or SI-
Symbol Symbol Explanation Unit
$\chi \quad$ YX \quad Yaw angle \quad rad

ITTC	Computer	Name	Definition or	SI-
Symbol	Symbol		Explanation	Unit

ω
ω
V0, OMN (ships, basic quantities) Rotational velocity
ω
V0P (ships, propulsor
$2 \pi n$
performance) Propeller
rotational velocity
ω_{E}
$\omega_{\mathrm{W}} \quad \mathrm{FC}$
FC
(environmental mechanics, $2 \pi f_{\mathrm{E}}=2 \pi / T_{\mathrm{E}}$
rad/s
waves) Circular wave
frequency of encounter
F

FC, OMF	(ships, basic quantities) Circular frequency
V0, OMN	(ships, basic quantities) Rotational velocity
V0P	(ships, propulsor performance) Propelle rotational velocity
FE	(environmental mechan waves) Circular wave frequency of encounter

(environmental mechanics, $\quad 2 \pi f_{\mathrm{W}}=2 \pi / T_{\mathrm{W}}$
waves) Circular wave
frequency
$\omega_{x} \quad$ P, OMX, (solid body mechanics, rigid rad/s
V0(1), V(4) body motions) Rotational
velocity around body axis x
$\begin{array}{lllr}\omega_{y} & \begin{array}{ll}\text { Q, OMY, } \\ \text { V0(2), V(5) }\end{array} & \begin{array}{l}\text { (solid body mechanics, rigid } \\ \text { body motions) Rotational } \\ \text { velocity around body axis } y\end{array} & \mathrm{rad} / \mathrm{s} \\ \omega_{z} & \begin{array}{ll}\text { R, OMZ, } \\ \text { V0(3), V(6) }\end{array} & \begin{array}{l}\text { (solid body mechanics, rigid } \\ \text { body motions) Rotational } \\ \text { velocity around body axis } z\end{array} & \mathrm{rad} / \mathrm{s} \\ & & \text { l }\end{array}$

ITTC Symbols

Version 2011
ITTC Computer Name Definition or SI-

Symbol
Symbol
Explanation

∇	DISPVOL	(ships, hull geometry, hydrostatics, stability,) Displacement volume	$\Delta /(\rho g)=\nabla_{\mathrm{BH}}+\nabla_{\mathrm{AP}}$	m^{3}
$\nabla_{\text {APP }}$	DISPVAP	(ships, hull geometry) Displacement volume of appendages	$\Delta_{\text {AP }} /(\rho \mathrm{g})$	m^{3}
$\nabla_{\text {BH }}$	DISPVBH	(ships, hull geometry) Displacement volume of bare hull	$\Delta_{\text {BH }} /(\rho \mathrm{g})$	m^{3}
∇_{C}	DVCAN	(sailing vessels) Displaced volume of canoe body		m^{3}
∇_{F}	DISVF	(hydrofoil boats) Foil displacement volume		m^{3}
∇_{fw}	DISVOLFW	(ships, hydrostatics, stability) Displacement volume of flooded water	$\Delta f_{w} /(\rho g)$	m^{3}
∇_{K}	DVK	(sailing vessels) Displaced volume of keel		m^{3}
∇_{R}	DVR	(sailing vessels) Displaced volume of rudder		m^{3}

ITTC	Computer	Name	Definition or Symbol
Symbol		SI-	Unit

0	(ships, hydrostatics, stability) Initial
A	(ships, hydrostatics, stability) attained
a	(ships, hydrostatics, stability) apparent
AB	(ships, hull geometry) After body
AP	(ships, hull geometry) After perpendicular
APP	(ships, hull geometry) Appendages
att	(ships, hydrostatics, stability) attained
BH	(ships, hull geometry) Bare hull
BK	(ships, appendage geometry) Bilge keel
BS	(ships, appendage geometry) Bossing
D	(ships, propulsor geometry) Duct
d	(ships, hydrostatics, stability) dynamic
DW	(ships, hull geometry) Design waterline
dyn	(ships, hydrostatics, stability) dynamic
e	(ships, hydrostatics, stability) effective
eff	(ships, hydrostatics, stability) effective
EN	(ships, hull geometry) Entry
f	(ships, hydrostatics, stability) false

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{array}{r} \text { SI- } \\ \text { Unit } \end{array}$
FB		(ships, hull geometry) Fore body		
FB		(ships, appendage geometry) Bow foil		
FP		(ships, hull geometry) Fore perpendicular		
FR		(ships, appendage geometry) Flanking rudder		
FS		(ships, hull geometry) Frame spacing		
FS		(ships, appendage geometry) Stern foil		
FW		(ships, hull resistance) Fresh water		
HE		(ships, hull geometry) Hull		
KL		(ships, appendage geometry) Keel		
KL L		(ships, hydrostatics, stability) keel line (ships, hydrostatics, stability) longitudinal		
LR		(ships, hull geometry) Reference Line		
$L P$		(ships, hull geometry) Based on Lpp		
LW M		(ships, hull geometry) Based on LwL^{2} (General) Model		
MAX		(ships, hydrostatics, stability) maximum		
MF		(ships, hull resistance) Faired model data		
MR		(ships, hull resistance) Raw model data		
MS		(ships, hull geometry) Midship		

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	SI- Unit
MTL		(ships, hydrostatics, stability) longitudinal trimming moment		
OW		(ships, hull resistance) Open water		
P		(ships, propulsor geometry) propeller shaft axis		
PB		(ships, hull geometry) Parallel body		
PMT		(ships, hydrostatics, stability) Permitted		
R		(ships, hydrostatics, stability) required (to be clarified)		
req		(ships, hydrostatics, stability) required (to be clarified)		
RF		(ships, appendage geometry) Rudder flap		
RU		(ships, hull geometry) Run		
RU		(ships, appendage geometry) Rudder		
S		(General) Ship		
S		(ships, hydrostatics, stability) Sinkage, squat		
s		(ships, hydrostatics, stability) Static		
sqt		(ships, hydrostatics, stability) Sinkage, squat		
SA		(ships, appendage geometry) Stabilizer		
SF		(ships, hull resistance) Faired full scale data		
SH		(ships, appendage geometry) Shafting		

ITTC Symbol	Computer Symbol	Name
SK		(ships, appendage geometry) Skeg
SR		(ships, hull resistance) Raw full scale data
SS		(ships, hull geometry) Station spacing
ST		(ships, appendage geometry) Strut
SW		(ships, hull resistance) Salt water
T		(ships, hydrostatics, stability) transverse
TC		(ships, hydrostatics, stability) Trim in cm
TM		(ships, hydrostatics, stability) Trim in m
TH		(ships, appendage geometry) Thruster
V		(ships, hydrostatics, stability) vertical
WG		(ships, appendage geometry) Wedge
WP		(ships, hull geometry) Water plane
WS		(ships, hull geometry) Wetted surface
φ		(ships, hydrostatics, stability) at heel angle φ
θ		(ships, hydrostatics, stability) at trim angle θ

ITTC	Computer	Name	Definition or Symbol
Symbol		Explanation	SI-

A	(fundamental, statistical, stochastic) Average, sample mean
$C R$	(fundamental, statistical, stochastic) Population covariance
CS	(fundamental, statistical, stochastic) Sample covariance
D	(fundamental, statistical, stochastic) Population deviation
$D R$	(fundamental, statistical, stochastic) Population deviation
DS	(fundamental, statistical, stochastic) Sample deviation
E, M, MR	(fundamental, statistical, stochastic) Expectation, population mean
M	(fundamental, statistical, stochastic) Expectation, population mean
MR	(fundamental, statistical, stochastic) Expectation, population mean
MS	(fundamental, statistical, stochastic) Average, sample mean
$P D$	(fundamental, statistical, stochastic) Probability density
PF	(fundamental, statistical, stochastic) Probability function
S	(fundamental, statistical, stochastic) (Power) Spectrum

ITTC Symbols

Version 2005

ITTC Symbol	Computer Symbol	Name	Definition or Explanation	$\begin{aligned} & \text { SI- } \\ & \text { Unit } \end{aligned}$
SS		(fundamental, statistical, stochastic) Sample spectrum		
R		(fundamental, statistical, stochastic) Population correlation		
RR		(fundamental, statistical, stochastic) Population correlation		
RS		(fundamental, statistical, stochastic) Sample correlation		
V		(fundamental, statistical, stochastic) Population variance		
$V R$		(fundamental, statistical, stochastic) Population variance		
VS		(fundamental, statistical, stochastic) Sample variance		

