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Abstract

We propose a resolution of d’Alembert’s Paradox comparing observa-
tion of substantial drag/lift in fluids with very small viscosity such as air
and water, with the mathematical prediction of zero drag/lift of station-
ary irrotational solutions of the incompressible inviscid Euler equations,
referred to as potential flow. We present analytical and computational
evidence that (i) potential flow cannot be observed because it is illposed
or unstable to perturbations, (ii) computed viscosity solutions of the Eu-
ler equations with slip boundary conditions initiated as potential flow, de-
velop into turbulent solutions which are wellposed with respect to drag/lift
and which show substantial drag/lift, in accordance with observations.
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How wonderful that we have met with a paradox. Now we have some hope of making
progress. (Nils Bohr)

1 Introduction

We propose a resolution of d’Alembert’s Paradox [6, 7, 8, 9, 15] comparing
observations of substantial drag/lift of a body moving through a slightly viscous
fluid such as air and water, with the mathematical prediction of zero drag/lift of
stationary irrotational solutions of the incompressible inviscid Euler equations,
referred to as potential flow. We present analytical and computational evidence
that (i) potential flow cannot be observed because it is illposed or unstable
to perturbations, (ii) computed viscosity solutions of the Euler equations [11]
with slip boundary conditions initiated as potential flow develop into turbulent
solutions, which are wellposed with respect to drag/lift and show substantial
drag/lift. Additional evidence is presented in [25] and the related work on
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blowup of Euler solutions [28], separation in inviscid flow [27], and drag/lift of
airplanes and cars [30, 29].

D’Alembert was led to formulate his paradox as follows working on a 1749
Prize Problem of the Berlin Academy on flow drag [7]:

It seems to me that the theory (potential flow), developed in all pos-
sible rigor, gives, at least in several cases, a strictly vanishing re-
sistance, a singular paradox which I leave to future Geometers to
elucidate.

Euler had come to same conclusion of zero drag of potential flow in his
work on gunnery [10] from 1745 based on the observation that in potential flow
the high pressure forming in front of the body is balanced by an equally high
pressure in the back, in the case of a boat moving through water expressed as

...the boat would be slowed down at the prow as much as it would be
pushed at the poop...

The commonly accepted resolution of d’Alembert’s Paradox propagated in
the fluid dynamics literature is attributed to Ludwig Prandtl, called the father of
modern fluid mechanics, who in the short note On the motion of fluids with very
small viscosity [32] from 1904, suggested that drag/lift possibly could emanate
from a mo-slip boundary condition with the tangential velocity changing from a
non-zero free-stream value to zero in a thin viscous boundary layer generating
transversal vorticity and thereby changing the global flow. Prandtl was inspired
by Saint-Venant stating in 1846 [33]:

But one finds another result (non-zero drag) if, instead of an invis-
cid fluid — object of the calculations of the geometers Fuler of the
last century — one uses a real fluid, composed of a finite number of
molecules and exerting in its state of motion unequal pressure forces
having components tangential to the surface elements through which
they act; components to which we refer as the friction of the fluid,
a name which has been given to them since Descartes and Newton
until Venturi.

Saint-Venant and Prandtl thus suggested that drag in a real fluid possibly
could result from tangential frictional forces in a thin viscous boundary layer
creating transversal vorticity, and accordingly inviscid potential flow could be
discarded because it has no boundary layer. These suggestions have over time
been transformed to become an accepted fact of modern fluid dynamics, ques-
tioned by few. Birkhoff conjectured in [1] that drag instead could be the result
of an instability of potential flow, but after a devastating review [35] did not
pursue this line of thought.



We find by computational solution of the Euler equations with slip boundary
conditions, that the potential solution develops into a turbulent solution with
substantial drag/lift resulting from streaks of low-pressure streamuwise vorticity
generated from an instability of potential flow at rear separation. We thus
obtain without any presence of viscous boundary layers, substantial drag/lift in
accordance with observations and the conjecture of Birkhoff.

We motivate the slip boundary condition by benchmark computations and
observations indicating that the skin friction decreases to zero with the viscosity
[34]. These facts are in direct contradiction to Prandtl’s claim that effects of
skin friction on drag/lift remain substantial under vanishing viscosity.

In particular, we show in [29, 30] that drag/lift of a car or airplane can be
accurately predicted by computing turbulent solutions of the Euler equations
with slip boundary conditions without resolving thin boundary layers. This is by
fluid dynamics expertize considered to be impossible with the motivation that
thin boundary layers have to be computationally resolved to correctly capture
drag/lift, which for an airplane would require 10'® mesh points [19] and is be-
yond the capacity of any foreseeable computer. Our resolution of d’Alembert’s
paradox thus seems to offer new possibilities in computational fluid dynamics:
Computational solution of the Euler equations can provide a wealth of infor-
mation in line with the expectations of Euler, after an incubation period of 250
years.

To solve the Euler equations computationaly we use an adaptive finite ele-
ment method referred to as EG2 with a duality-based a posteriori error control
of drag/lift presented in detail in [25, 20, 21, 23, 24], and in executable form
available from the Unicorn-project under FEniCS [37], allowing direct verifica-
tion of the computational results of this note.

An outline is as follows: We first recall the notion of wellposedness and the
Euler equations for inviscid incompressible fluid flow together with the poten-
tial solution with zero drag for flow around a circular cylinder. We analyze the
stability of the potential solution and find different perturbation growth in the
front and back of the cylinder causing a pressure drop in the back resulting
in drag. We then introduce the concepts of viscosity solution, turbulent so-
lution and EG2 solution and present computational evidence of wellposedness
of drag/lift of turbulent EG2 solutions, including the drag of a car (in direct
contradiction to state of the art CFD). We then summarize the evidence of our
resolution of d’Alembert’s paradox and compare with Prandtl’s resolution.

2 Wellposedness

Since Hadamard [14] it is well understood that solving differential equations,
such as the Euler equations, perturbations of data have to be taken into ac-
count. If a vanishingly small perturbation can have a major effect on a solution,
then the solution is illposed, and in this case the solution may not carry any
meaningful information and thus may be meaningless from both mathemati-
cal and applications points of view. According to Hadamard, only a wellposed



solution, for which small perturbations have small effects on certain solution
outputs, can be meaningful.

We shall present evidence that a potential solution is illposed with respect to
all outputs, including drag/lift, and thus explain why the zero-drag prediction
of potential flow carries no information. We also present evidence that com-
puted turbulent EG2 solutions are wellposed with respect to drag/lift and thus
can give valuable information. Although wellposedness in the form of hydrody-
namic stability is a key issue in fluid dynamics literature, a stability analysis of
potential solutions seems to be lacking.

3 The Incompressible Euler Equations

We recall the Euler equations expressing conservation of momentum and mass of
an incompressible inviscid fluid enclosed in an open set € in R? with boundary I':
Find the velocity u = (u1,us,u3) and pressure p depending on (x,t) € QU x T
such that

U+ (u-Vu+Vp = f in Qx1I,
Veu = 0 in Qx1I, (1)
u-n = g onI'x1I,
u(-,0) = u° in Q,
where n denotes the outward unit normal to I', f is a given volume force, g

is a given inflow/outflow velocity, u° is a given initial condition, @ = % and

I =[0,T) a given time interval. We notice the slip boundary condition expressing
inflow /outflow with zero friction with g = 0 at a solid boundary.

4 Exponential Instability of Linearized Equations

The lack of viscosity with regularizing effect make the Euler equations inacces-
sible to an analytical mathematical study. The difficulty is exposed by formal
linearization: Subtracting the Euler equations for two solutions (u, p) and (@, p)
with corresponding (slightly) different data, we obtain the following linearized
equation for the difference (v,q) = (u — u,p — p):

v+ (u-Vo+@w-VYa+Ve = f—f in Qx1,
Vv = 0 inQxI, ()
v-n = g—g onI' x I,
v(,0) = u®—1u° in .

Formally, with w and @ given, this is a linear convection-reaction problem for
(v, q) with the reaction term given by the 3 X 3 matrix Va. By the incompress-
iblity, the trace of Vu is zero, which shows that in general Vu has eigenvalues
with real value of both signs, of the size of |Va| (with | - | some matrix norm),
thus with at least one exponentially unstable eigenvalue.

Accordingly, we expect local exponential perturbation growth of size exp(|Vult)
of a solution (u,p), in particular we expect a potential solution to be illposed.



This is seen in EG2 solutions initiated as potential flow, which subject to residual
perturbations of mesh size h, in log(1/h) time develop into turbulent solutions.
We give computational evidence that these turbulent solutions are wellposed,
which we rationalize by cancellation effects in the linearized problem, which has
rapidly oscillating coefficients when linearized at a turbulent solution.

Formally applying the curl operator Vx to the momentum equation of (1)
we obtain the vorticity equation

O+ w - Vw—(w-Vu=Vxf inQ, (3)

which is a convection-reaction equation in the vorticity w = V x u with coef-
ficients depending on wu, of the same form as the linearized equation (2), with
similar properties of exponential perturbation growth exp(|Vult) referred to as
vortex stretching. It is often argued that from the vorticity equation (3), it fol-
lows that vorticity cannot be generated starting from potential flow with zero
vorticity and f = 0, which is Kelvin’s theorem. But this is an incorrect conclu-
sion, since perturbations f of f with V x f # 0 must be taken into account and
the perturbation growth exp(|Vul|t) is very large if only the exponent is mod-
eratly large. What we see in EG2 computations of the cylinder flow, is local
exponential growth of vorticity by vortex stretching at rear separation, which is
a main route in the transition to turbulence.

5 Viscous Regularization
We define the FEuler residual by

R(u,p) =4+ (u-V)u+ Vp — f, (4)
which is the residual of the momentum equation, assuming for simplicity that

the incompressiblity equation V - 4 = 0 is not subject to perturbations. The
reqularized Euler equations take the form: Find (u,,p,) such that

R(uy,py) = —=V-@Vu,) inQx1,
Veu, = 0 in Qx1I, %)
Uy -n = g onI'x I,
UV(',O) = UO in Q,

where v > 0 is a small viscosity, together with a homogeneous Neumann bound-
ary condition for the tangential velocity. Notice that we keep the slip boundary
condition w, - n = g, which eliminates viscous no-slip boundary layers, and the
turbulence we will discover thus does not emanate from boundary layers with
tangential skin friction. We consider here a standard regularization and present
EG2 regularization in the next section. Existence of a pointwise solution (u,, p,)
of (5) (allowing v to have a certain dependence on |Vul), follows by standard
techniques, see e.g. [3]. Notice that the Euler residual R(u,,p,) equals the
viscous term —V - (vVu, ), which suggests an interpretation of the viscous term
in the form of the Euler residual.



The standard energy estimate for (5) is obtained by multiplying the momen-
tum equation with u, and integrating in space and time, to get in the case f =0
and g =0,

t t
/ / R(uy,py) - uy dedt = D(uy;t) = / / v|Vu, (s, r)|?dzds, (6)
0 Jo 0 Jo
from which follows by standard manipulations of the left hand side,
K(u,(t)) + D(uy,;t) = K(u°), >0, (7)

where

K(u,(t)) = %/S2|ul,(t,x)|2dx.

This estimate shows a balance of the kinetic energy K (u,(t)) and the viscous
dissipation D(u,;t), with any loss in kinetic energy appearing as viscous dis-
sipation, and vice versa. In particular D(u,;t) < K(0) and thus the viscous
dissipation is bounded (if f =0 and g = 0).

Turbulent solutions of (5) are characterized by substantial turbulent dissipa-
tion, that is (for ¢ bounded away from zero),

D(t) = lim D(uy,;t) >> 0. (8)

v—0

That a positive limit (~ 1) exists is Kolmogorov’s conjecture, which is consistent
with

1 1
||VUV||Q ~ W; HR(uuapl/)HO ~ Wa (9)

where || - [|o denotes the Lo(Q)-norm with @ = Q x I. On the other hand, it
follows by standard arguments from (7) that

IR (uw, po)]| -1 < Vv, (10)

where || - ||1 is the norm in Lo(I; H=1(£2)). Kolmogorov thus conjectures that
the Euler residual R(u,,p,) is strongly (in Lo) large, while being small weakly
(in H71).

6 EG2 Regularization

An EG2 solution (U, P) on a mesh with local mesh size h(z,t) according to [25],
satisfies the following energy estimate (with f =0 and g = 0):

K(U(t)) + Dp(U;t) = K(u), (11)
where

Dh(U;t):/Ot/QhR(U,P)dedt, (12)



is an analog of D(u,;t) with h ~ v. We see that the EG2 viscosity arises
from penalization of a non-zero Euler residual R(U, P) with the penalty directly
connecting to the violation (according the theory of criminology). A turbulent
solution is characterized by substantial dissipation Dy (U;t) with ||R(U, P)||o ~
h=1/2 and

IR(U, P)|l-1 < VA (13)

in accordance with (9) and (10).

EG2 explains the occurence of viscous effects in Euler solutions in a new
way, not simply assuming ad hoc that “there is always some small constant
shear viscosity”, but from the impossibility of pointwise exact conservation of
momentum. EG2 viscosity is not a simple constant shear viscosity but rather a
solution dependent bulk (or streamline) viscosity [25, 26].

7 Wellposedness of Mean-Value Outputs

Let M(v) = fQ v - dxdt be a mean-value output of a velocity v defined by a
smooth weight-function ¢ (z,t), and let (u,p) and (U, P) be two EG2-solutions
on two meshes with maximal mesh size h. Let (¢, 8) be the solution to the dual
linearized problem

—p—(u-V)p+VUTp+V0 = 1 in QxI,
Ve =0 inQx1,
p'n = g onI' x I, (14)
e, T) = 0 in Q,

where T denotes transpose. Multiplying the first equation by v — U and inte-
grating by parts, we obtain the following output error representation [25, 26]:

M(u) — M(U) = /Q (R(u,p) — R(U, P)) - o dadt (15)

from which follows the a posteriori error estimate
|M(u) — M(U)| < S(|R(u, p)|| -1 + [[R(U, P)||-1), (16)

expressing wellposedness of the output M () with respect to residual perturba-
tions, where the stability factor

S =5w,U,M) = S(u,U) = [l a1 (17)

In [25] we present a variety of evidence, obtained by computational solution
of the dual problem, that for global mean-value outputs such as drag and lift,
S << 1/vh, while ||R||_1 ~ v/h, allowing computation of of drag/lift with a
posteriori error control within one or a few percent.



8 Stability of the Dual Linearized Problem

A crude analytical stability analysis of the dual linearized problem (14) using
Gronwall type estimates, indicates that the dual problem is pointwise exponen-
tially unstable because the reaction coefficient VU is locally very large. This
is consistent with massive observation that point-values of turbulent flow are
non-unique or unstable.

On the other hand we observe computationally that S is of moderate size for
mean-value outputs of turbulent solutions. We explain in [25] this remarkable
fact as an effect of cancellation from the following two sources:

(i) rapidly oscillating reaction coefficients of turbulent solutions,
(ii) smooth data in the dual problem for mean-value outputs.

For a laminar potential solution there is no cancellation, and therefore not even
mean-values are wellposed.

9 Potential Flow around a Circular Cylinder

We consider potential flow (stationary irrotational flow) around an cylinder of
diameter 1 oriented along the x3-axis and immersed in an inviscid incompressible
fluid filling R? with velocity (1,0,0) at infinity. The potential velocity is given
as u = V¢, where ¢ satisfies Laplace’s equation A¢ = 0 outside the cylinder
with V¢ = (1,0,0) at infinity and accordingly is given by

d(x1, 2, 3) = (r + %) cos(6), (18)
where (21, x2) = (rcos(f),rsin(f)) is expressed in polar coordinates (r,6). In
Fig. 1 we plot the streamlines of u in a section of the cylinder, which are the
curves followed by fluid particles, and the pressure. We notice that the potential
flow (in each section) has one separation point at the back of the cylinder, where
the flow separates from the cylinder boundary. We also notice that the both
velocity and pressure are symmetric in the flow direction (z;-direction), which
means that the drag of the cylinder is zero, as noted by Euler and d’Alembert:
the pressure in front of the cylinder is balanced by the same pressure behind, in
contradiction to observations of lower pressure in the back with corresponding
substantial drag.

10 EG2 Solution of Cylinder Flow

We compute by EG2 the flow around a circular cylinder in a channel with
given inflow velocity (1,0,0) choosing the initial velocity u® = 0. We see the
zero-drag irrotational potential solution quickly developing during the first time
steps, but the potential solution gradually changes into a turbulent solution with
substantial drag and vorticity and a low pressure wake, see Fig. 2. We observe



Figure 1: Potential solution of the Euler equations for flow past a circular cylin-
der; colormap of the pressure (left) and streamlines together with a colormap
of the magnitude of the velocity (right) .

the following key features of EG2 solutions, which are not features of Prandtl’s
resolution: (a) no boundary layer prior to separation, (b) one separation point
in each section of the cylinder which oscillates up and down and (c) strong
vorticity in the streamwise direction in the wake. The computed drag coefficient
cp ~ 1.0, which is consistent under mesh refinement, and which fits with the
observation [36] that the drag increases from =~ 0.5 to about 1.0 beyond the
drag crisis occuring for a Renolds number == 106. We see that the solution looks
very similar to the experiments of Prandtl [32], see Fig. 3, and in Fig. 4 we see
that the streamwise (x1) vorticity dominates the tranversal (x3) vorticity, and
that the pressure is low inside tubes of vorticity in the x;-direction behind the
cylinder, which creates drag.

11 Stability Analysis of Potential Flow

We shall now in a more precise model analysis of the linearized equations, moti-
vate the development of the low pressure streaks of streamwise vorticity attach-
ing at rear separation, which cause the drag, as a result of different perturbation
growth at forward attachment and rear separation.

We start approximating the potential flow at rear separation by v = (x1, —x2,0)
by replacing the cylinder by the half-plane {z; > 0} as in Fig. 5. Assuming z;
and zo are small, we can approximate the ve-equation of (2) by

Uy — V2 = fo,

where fo = fa(x3) is an oscillating mesh residual perturbation depending on
x3 (including also a pressure-gradient), for example fo(x3) = hsin(xs/d), with



Figure 2: Computational solution of the Euler equations for flow past a cir-
cular cylinder; colormap of the pressure (left) and streamlines together with a
colormap of the magnitude of the velocity (right) .

Figure 3: Vorticity in turbulent flow past a circular cylinder: Prandtl’s experi-
ment (left), and a computational solution without boundary layer (right).
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Figure 4: Computational solution of the Euler equations for flow past a circular
cylinder; colormap of the pressure and isosurfaces for low pressure (upper left),
colormap of the magnitude of total vorticity and isosurfaces for high magnitude
of the individual components: x;-vorticity (upper right), zs-vorticity (lower
left), x3-vorticity (lower right).
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Figure 5: Model of potential solution at rear separation.
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6 > 0. It is natural to assume that the amplitude of fy; decreases with §. We
conclude, assuming v2(0,z) = 0, that

va(t, z3) = texp(t) fa(xs),

and for the discussion, we assume vz = 0. Next we approximate the w;-vorticity
equation in (3) for zo small and z1 > Z7 > 0 with z; small, by

0
wl—l—ﬁla—(;l—wl:&
1

with the “inflow boundary condition”

w1 (Z1, 2, 23) = g—:j’ = texp(t)g—ii

The equation for wy thus exhibits exponential growth, which is combined with
exponential growth of the “inflow condition”. Altogether we expect exp(t) per-
turbation growth of residual perturbations of size h, resulting in a global change
of the flow after time T ~ log(1/h), which can be traced in the computations.
Since the combined exponential growth is independent of 4, it follows that a
large-scale perturbations with large amplitude have largest growth. This is seen
in computations, where ¢ is of the size of the diameter of the cylinder.

We can thus understand the formation of streamwise streaks of vorticity
at rear separation as the result of a force perturbation oscillating in the x3
direction, which by the retardation in the xs-direction creates vorticity in the
x1-direction, which is further magnified by vortex stretching. Thus, we find
exponential perturbation growth at rear separation from both the retardation
in the xs-direction and the accelleration in the x; direction.

We next model the attaching flow at the front by v = (—z1,22) in the
half-plane z; < 0. In this case, u; is retarding before attachment, but not
by meeting an opposing flow as us does at separation, which means that the
analog of the perturbation fs, cannot be established in attachment at the front.
After attachment, the flow is accelerating in the o direction with corresponding
exponential growth of wy, but in this case without the inflow occuring at rear
separation. The presence of small wa-vorticity at the leading edge of an airfoil
is visible e.g. in Fig. 1.15 of [25].

12 EG2 solution of a car

We note that the resolution of the paradox without the need for a boundary layer
has important practical implications, as the common pessimistic predictions
for high Reynolds number computational fluid mechanics [19] are based on the
computational cost of resolving turbulent boundary layers. On the other hand, a
resolution of the paradox without boundary layers open for a wealth of advanced
computations, previously deemed impossible. In particular, in Fig. 6 we show a
computation of the turbulent flow around a car using EG2, presented in detail in
[29], with separation and drag consistent with what we expect from experiments.
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Figure 6: EG2 solution of the turbulent flow around a car (geometry courtesy
of Volvo Car Corporation).

13 Summary

We have presented a resolution of d’Alembert’s Paradox based on analytical and
computational evidence that a potential solution with zero drag is illposed as a
solution of the Euler equations, and under perturbations develops into a well-
posed turbulent solution with substantial drag in accordance with observations.

Our resolution is fundamentally different from that proposed by Saint Venant
and Prandtl suggesting that drag/lift can emanate from viscous boundary layers
even with vanishingly small viscosity. We have presented evidence that correct
drag/lift can be obtained by computing turbulent solutions of the Euler equa-
tions with slip boundary conditions. We have thus shown that drag/lift mainly
results from the turbulent nature of the flow and only to a small part from
viscous boundary layers.
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