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Abstract

A definite trend in computational applied mechanics is the development of integrated procedures for design optimization based on
large-scale numerical simulations (Simulation-Based Design, SBD). In the present paper the fundamental elements of a SBD environ-
ment for shape optimization are presented and analyzed. The focus is on complex engineering optimization problems which involve com-
putationally highly expensive objective functions and nonlinear constraints. Advanced strategies adopted for reducing the overall
computational effort are illustrated, optimization algorithms for nonlinear programming problems are discussed as well as alternative
techniques for shape variation and mesh manipulation, necessary to automatically adapt the volume grid to the evolving shapes. A
new Verification and Validation (V&V) methodology for assessing errors and uncertainties in simulation based optimization is also intro-
duced based on the trends, i.e., the differences between the numerically predicted improvement of the objective function and the actual
improvement measured in a dedicated experimental campaign, including consideration of numerical and experimental uncertainties. Two
different SBD versions are then presented and demonstrated on a complex industrial problem, namely the optimal shape redesign of a
ship under real-world geometrical and functional constraints, whose evaluation during the optimization process involves repeated solu-
tions of the Reynolds Averaged Navier—Stokes equations. Finally an experimental campaign is carried out on the two optimized models
to validate the computations and assess the success of the optimization process. Both the optimized models demonstrate improved char-
acteristics beyond the numerical and experimental uncertainties, confirming the validity of the SBD frameworks.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The increasing complexity of engineering systems with
the inherent difficulty to deal simultaneously with a grow-
ing number of design goals and constraints has raised the
interest in the development of Simulation-Based Design
(SBD) frameworks, which combine together computation-

* This work has been partially supported by the US Office of Naval
Research under the grants No. 000140210489, No. N000140210304 and
No. N00140210256, through Dr. Pat Purtell.

* Corresponding author. Tel.: +39 06 50299296; fax: +39 06 5070619.

E-mail address: e.campana@insean.it (E.F. Campana).

0045-7825/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2006.06.003

ally expensive analysis tools, such as Reynolds Averaged
Navier—Stokes (RANS) solvers, with computer-aided
design systems and efficient optimization algorithms.
Modern engineering software for the design of all kind of
transport systems (land, air and sea vehicles) is evolving
in this direction and many authors believe that the recent
advancements in the simulation of systems governed by
partial differential equations (PDE) will increase the diffu-
sion of SBD frameworks in this field, leading to innova-
tions in shape and enhancements in performances (e.g.,
[4,21,22,34)).

Shape optimization has a long tradition in design engi-
neering [30,18]. In the naval hydrodynamic context, the
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rapidly growing amount of papers devoted to optimal
shape design of marine vehicles (e.g., [24,39,12,37,29]) wit-
ness the increasing consideration received by shape optimi-
zation techniques in the design of efficient ships. In this
framework, the redesign of the surface combatant ship
DTMB 5415 (conceived by David Taylor Model Basin
(USA) as a preliminary design for a US Navy surface com-
batant (ca. 1980) with a sonar dome bow and transom
stern)! has been frequently used as a typical example of
a highly complex shape optimization problem: Newman
et al. [24] optimized the bulb using sensitivity analysis
and complex variable finite-difference approach, a finite-
difference gradient-based approach was followed by
Tahara et al. [37] for stern and sonar dome optimization,
Peri and Campana [26-29] investigated a variable-fidelity
approach [2] to speed up the optimization process using
free surface RANS in a multiobjective design problem.

Nonetheless, works on this topic are still subject to
criticisms raised by design engineers about the excessive
simplicity of the optimization problem solved when com-
pared to the complexity of a real-life design problem. Addi-
tionally, questions are posed about final shapes obtained
form the optimization process, often classified as unrealis-
tic or too expensive to be build. Moreover, the lack of
experimental evidence of the success of the optimization
often shed a shadow of uncertainty on the practical useful-
ness of the whole procedure and on the maturity of the
numerical shape optimization.

In reality, many optimization tools and SBD archi-
tectures are not sufficiently mature or appropriate for
real-world applications, for a number of reasons: shape
optimization of a complex geometry typically involve a
large number of variables, different disciplines and conflict-
ing objectives, requiring hundreds or thousands of function
evaluations to converge to an optimal design. Further-
more, if high-fidelity CFD solvers are required as analysis
tools (e.g., RANS solvers), both derivative-free and gradi-
ent-based optimization methods become more and more
expensive. Another great challenge comes from the adop-
tion of nonlinear constraints, which inevitably produce
non-convex feasible design space and from multimodality
of the objective functions, i.e., functions with many local
minima. In such design spaces, unsophisticated use of local
optimization techniques is normally inefficient for non-con-
vexity and multimodality can easily “trap’ local optimizers
in sub-optimal designs. The use of Global Optimization
(GO) algorithms can alleviate the last two problems, but,
on the other end, inevitably leads to a further increase of
the computational effort.

Anyhow, SBD developers have to face the challenges
posed by real engineering applications, addressing prob-
lems of larger complexity and size. This is the major aim
of three coordinated projects funded by the ONR and

' The geometry of the DTMB 5415 can be downloaded from the web
site: http://www.iihr.uiowa.edu.

resulting in a close interaction among ITHR — Hydroscience
and Engineering of the University of lowa, the Osaka Pre-
fecture University (OPU), and the Italian Ship Model
Basin (INSEAN). The goal is to develop reliable and effi-
cient SBD frameworks capable of dealing with complex
design problems.

In the present paper, we analyze different alternatives of
the SBD fundamental elements and test them in a real-life
application. SBD functional components are briefly ana-
lyzed and alternatives are described: codes for CFD simu-
lation, optimizers and geometry and mesh modification
tools. Both derivative-free and derivative-based algorithms
are tested as optimizers. In the former, a Genetic Algo-
rithm approach [17,10] is adopted and modified in a
“narrow band” approach, including the capabilities of high
performance computing, with a portable, multilevel paral-
lelism for dynamic load balance. In the second SBD frame-
work, since the multigrid technique used in the RANS
solver naturally provide a set of meshes of various refine-
ment, a particular variable-fidelity model (AMMO,
Approximation Model Management Optimization, [1-3])
has been used to reduce the computational effort in the
computation of the gradient of the objective function.

The two SBDs are also based on different high-fidelity
RANS solvers adopted for the analysis. At the Gothenburg
international CFD workshop the DTMB 5415 was selected
as a benchmark representative of navy designs and used to
test up-to-date free surface RANS solvers. The two analy-
sis tools adopted in this paper, namely CFDSHIP-lowa
[25]and MGShip [11], classified in the workshop as the best
two codes on this test case, demonstrating the accuracy of
their prediction [19]. Different techniques for shape and
grid manipulation (CAD-free and CAD-based) have been
also adopted during the optimization process.

With the aim of exploring the effectiveness of alternative
strategies, two SBD environments are eventually developed
with different components and used to solve a single objec-
tive function problem relative to the navy ship DTMB
5415. In the problem, complexity has been introduced by
(1) enforcing nonlinear, real-life geometrical and functional
constraints, to provide realistic final optimal designs, (ii)
adopting accurate (but CPU-time expensive!) PDE solvers
in the analysis of the sub-optimal configurations and (iii)
demonstrating the success of the optimization by carrying
out a dedicated experimental campaign to assess the real
enhancements in the explored objective function.

The region of the ship subject to change is restricted to
the bow and the sonar dome (about 20% of the overall ship
surface). The nature of the problem is hence the redesign of
some part of an already existing complex system, a quite
difficult test which only allow a very reduced freedom to
the optimizer and explains the use of local optimizers. Fur-
thermore, realistic constraints have been enforced in the
problem. Adopted functional constraints are connected
with the ship’s operability and propulsion. Geometrical
constraints enforced refer to the displacement, the major
ship’s dimensions, the bow entry angle, and the sonar dome
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position and minimum width. In this paper the problem is
formulated for the bare hull, hence partially reducing some
of the geometrical complexities (e.g., no appendages and
propellers will be considered here) which however are in-
effective in the redesign of the bow.

Finally, to assess the success of the optimization process,
a dedicated experimental campaign on the original and on
the optimized models has been carried out. The experimen-
tal data are then used in a new verification and validation
(V&V) procedure based on the analysis of the trend of the
objective function to be minimized. This procedure repre-
sents an extension of the one proposed by Stern et al.
[33,41] for single numerical simulations and piggyback on
Coleman and Stern [9] validation approach for trends by
adding the verification considerations. Indeed, due to the
inherent uncertainties in simulations and experiments the
success of an optimization process is more appropriately
based on trends than absolute values. Reported results
demonstrate the success of both the SBD environment
developed. The extension of the developed SBDs to multi-
objective, global optimization is the authors’ current effort
[6,38] and will be presented in a sequel paper.

2. Basic elements of simulation-based design optimization

Shape design optimization is typically formulated in the
framework of Nonlinear Programming (NLP) problem.
The mathematical formulation assembles all the design
variables xi,Xx»,...,Xy in a vector x = (xq,Xx,.. .,xN)T
belonging to a subset y of the N-dimensional real space
RY, that is x € y C RY (upper x* and lower x! bounds are
typical enforced onto the design variables). The objective
of the optimization f and the equality and inequality con-
straints 4, g are functions of the design variables x and of
the state of the system #. A general form for constrained
NLPs is then to find the particular vector X in the subset
% which solves the following:

min flxu(x) x=(x,x,...,x),
xeyC RY
subject to  A;(x) =0, j=1,...,M, (1)
g,(x) <0,

The physical state of the system is numerically evaluated by
solving a system of PDE of the general form A(x,u(x)) =0
The solution of this problem typically requires the use of
some numerical tool — the first fundamental element of the
SBD framework, Fig. 1 — to solve the system A(x,u(x))
and evaluate the current design x, obtaining information
on the constraints too. If the function used to define the opti-
mization problem is of fluid dynamic nature, as in our case,
the step requires the evaluation of the design x via a CFD
solver, a process which is itself computationally intensive.
Within a standard nonlinear optimization algorithm
(Fig. 1) the solution of these differential equations is required

Optimizer

O

Geometry and grid CFD
manipulation

Fig. 1. Basic elements of a CFD-based optimization environment.

for each iteration of the algorithm. In addition to these two
elements, a third one is necessary: a geometry modeling
method to provide a link between the design variables and
a body shape. When the analysis tools is based on the solu-
tion of a PDE on some volume grid around a complex geo-
metry this task is not a trivial one and often requires some
attention. The flexibility of this element may greatly affect
the freedom of the optimizer to explore the design space.

In the following, two different approaches are investi-
gated for each component.

2.1. Optimizer

In the detailed design phase of complicated systems like
ships, the use of low-fidelity analysis tools does not guaran-
tee real improvements, especially when the margin for
improvement is small. Complex, high-fidelity CFD solvers
such as free surface RANS codes might then become
necessary.

A major problem to face with is then that one can be
overcome by the model’s computational expense. Indeed,
the use of these expensive analysis tools in iterative proce-
dures introduces per se a relevant problem to solve, both in
derivative-free and derivative-based approaches. Hence, in
the following we will indicate for both these approaches
two alternative ways to reduce the overall computational
effort.

2.1.1. Narrow band derivative-free approach

Genetic Algorithms (GA) are a stochastic search tech-
nique that perform a multiple directional search by main-
taining a population of potential solutions. In the present
case a so-called “Narrow Band” approach is used, meaning
with this that the population used is small and that the
bounds for the variables are narrow, so that the search
remains confined in a relatively small design space, mimick-
ing a derivative-free local optimization technique.

The adopted algorithm proceeds as follows: (i) genera-
tion of an initial population of individuals at random
manner; (ii) decoding and evaluation of some predefined
quality criterion, referred to as the fitness; (iii) selection
of individuals based on a probability proportional to their
relative fitness; (iv) crossover and mutation. The steps (ii)
through (iv) are repeated until the generation achieves des-
ignated number. The objective function Fgy, is related to
the fitness function f,, a form of Sigmoid function in the
present study, i.e.,
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For maximization: s =T
1 + e obi
. 1
For minimization: . = G
1 4 efoni

and constraints are accounted for by using a penalty func-
tion approach, which yields resultant fitness f given by

[=To+r D )]+ Imin{0,—g,(x)}|,
=1 =1

where r is penalty parameter. GA is generally capable for
finding global minimum/maximum within the design space.
In a form of mathematical model, the genotype is repre-
sented as frequency. For instance, the frequency of geno-
type B; at generation z+ 1, i.e., x{(¢+ 1) is given in terms
of frequency at generation ¢ as follows:

fi
xi(t+1) 0
where n is population size, f; is a fitness of B;, and f(¢) is the
average fitness of a population. In similar manner, change
in the frequency through crossover and mutation are given
by

Crossover: xi(t+1) = Z Z C(kli, j)x;(t)x,(t),
i=1 j=1

Selection:

() (=1,....n),

Mutation: x;(t+1) = ZMiix_i(t)v
j=1

where C is a crossover tensor, and Mj; is a mutation matrix
which stands for the probability of mutation from B; to B;
over one generation. C and M includes crossover and
mutation ratios, both of which are system parameters.
Evaluation of effectiveness of GA is often discussed [17],
but that will not be the main objective of the present paper.
It is known that Simulated Annealing (SA), a related global
optimization technique, can also be used within a standard
GA algorithm, simply by starting with a relatively high rate
of mutation, which decreases over time along a given
schedule.

As stated before, in the present study the design space is
relatively narrow banded; therefore, other advantages of
GA are here more highlighted, namely the derivative-free
nature and high adaptableness for parallel computing,
i.e., intrinsic parallelism. Indeed, the conventional GA
algorithm has been adapted for parallel computing by
using the Message Passing Interface (MPI) protocol [36].
Fig. 2 shows the difference between the present parallel
GA architecture and the conventional serial computations.
For the former case, processor 0 controls overall GA pro-
cedure, and processors 1 through m, where m is number
of population, simultaneously execute CFD method, i.e.,

evaluation of f(f;) in the figure. The parallel architecture
offers advantage over the serial architecture for consider-
ably higher computational efficiency, i.e., computational
speed of the former is nearly m times faster than that of

GA

( Proc. 0)
[

. 1
a | L S

Fig. 2. Serial and parallel architecture of the Narrow Band-GA optimizer.

the latter, since most of CPU time is used for CFD method,
and communication overhead is basically small. Further-
more, computational speed for GA in parallel architecture
does not depend on number of population as well as num-
ber of design parameters.

2.1.2. Derivative-based variable-fidelity approach

When expensive computer codes (those necessary to
solve complex high-fidelity models) are used into the solu-
tion of the optimization problem, the overall computational
time might become unaffordable and the introduction of
cheaper approximations (low-fidelity models) is unavoid-
able. The idea of using low-fidelity, inexpensive models,
together with occasional (heuristic) recourse to high-fidel-
ity, more expensive models (for monitoring the progress
of the algorithm) has been used in engineering for long time.
Several versions may be implemented, depending on the
type of the variable-fidelity model: variable grid density,
variable iterative accuracy, variable physics.

A systematic approach (in contrast to heuristic
approaches) is explored in the present paper, the variable-
fidelitylfirst-order trust region AMMO method proposed
by Alexandrov and Lewis [1-3]. The ability of the low-fidel-
ity model to guide the optimization process is monitored
and its quality may be improved when required, while
consistency constraints are enforced to ensure global
convergence to the original high-fidelity solution.

This AMMO variable-fidelity framework can be used
with any derivative-based method and set of models,
including cases where gradients are computed via adjoints
or via automatic differentiation [5,13,15]. In our case, we
are focusing on zero-order methods, because the problems
in question have a sufficiently small number of variables,
and because zero-order methods may have additional
smoothing effects that assist in not being stuck in local
optima.

Let us suppose to have two models for computing our
objective function f'and that they can both be used as anal-
ysis tool: a simple low-fidelity model (f;), computationally
cheap, and a high-fidelity model (f;) more accurate but also
more expensive. We can define their ratio as a scale factor
p(x), function of the design x, the vector which contains all
the design variables:
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Bx) = fu(x)/Ai(x).

We can use this scale factor to improve the quality of
the lower approximation model. To this aim we need a
model for f(x) and this can be easily build by a first-order
local approximation fjo(x) of f(x) around the current
design x*:

Broe(¥) = B(*) + V)T (x — 5.
This local approximation is then used to correct (to the
first-order) the value obtained with the low-fidelity model

fi:

Su(x) = B)fi(x) = a(x) = Proe(x)£i(x),

where a(x) is now the improved approximation which
satisfies the following consistency conditions:

a(xk) :fh<xk)v
Va(x*) = Vi ().

Being based on quantities local to x* however, one has
to keep in mind that the approximation a(x) cannot be
applied in the whole design space and that, since we are
progressively moving away from x*. The validity of the
approximation must be monitored in some way: the
trust-region method offer a systematic way to perform this
monitoring and is therefore adopted here in order to deter-
mine the region (of radius r) in which we can still ¢rust the
correction factor fioc(x) build at the design x*.

At the k-step a general algorithm has the following
general form:

1. Compute the gradient of the corrected low-fidelity
model Va(x");

2. Using a and Va(x") solve the optimization problem and
obtain the descent step s* under the constraint ||s*|| < r;

w

. The new design is given by the vector x*™! = x* + §*;
4. Measure the progress made: compute the ratio between

the real and the expected improvement at the new design
k+1
X

o i) = Al

fo(xd) = alx+t)
5. Analyze R:

e a value close to 1 means that the model a(x) predicts
the real behavior exceptionally well and that the trust
region radius r might be increased;

e a value far from 1 means that the correction factor
Proc(x) 1s no more reliable and causes the step to be
rejected. Reduce the trust region radius r. Should
the radius become too small fi,(x) and a(x) must
be recomputed;

o the step is accepted otherwise, without altering the r
value.

It must be underlined that the estimation of the gradient
with the expensive f; model is only required when the cor-
rection a(x) has to be newly computed, since Va(x") is

needed. The formulation adopted for the correlation law
(the scale factor f5(x)) is due to Haftka [16] and [7].

Flexibility, effectiveness and easiness of implementation
are strong points of this algorithm. Finally, we stress that
the final optimized shape obtained is the same as if a
high-fidelity model was used during all the process. Indeed,
the consistency condition derived before ensure the quality
of the “corrected” lower fidelity model, telling us when the
local approximation cannot be trusted anymore and has to
be re-build.

2.2. Geometry and grid manipulation

Tools for geometry modeling (and its necessary sequel,
the automatic grid deformation) are another relevant
SBD component. An efficient and flexible way to modify
the geometry of the body is necessary for a full investiga-
tion of the design variables space and a successful optimi-
zation. Techniques should be enough versatile to describe
a broad variety of complex 3D configurations and suffi-
ciently compact so to use as few variables as possible. Once
the optimization algorithm obtains the vector with the new
design variable values, we have to spread the deformation
over the body surface and the computational volume grid.
Flexible methods are the superposition of several basic
forms (morphing techniques) or the expansion/reduction
of basic geometry. Another capable method for geometry
modeling is through application of CAD systems. In
the present study, two approaches are investigated: i.e.,
a CAD-based approach and an additive perturbation
(CAD-free) method.

2.2.1. CAD based

Both based on a CAD system, two approaches are
possible, i.e., CAD direct control and CAD emulation
approaches. The implementations into optimization
environments are shown in Figs. 3 and 4. In the former,
optimizer directly executes CAD macro file in which proce-
dures are pre-described for hull form modification and
evaluation of constraint function. In the latter, a module
is implemented in order to emulate CAD operation han-
dling with the mathematical surface modeling. For exam-
ple, the Non-Uniform Rational B-Spline (NURBS) is
widely used in CAD system for hull-form design as IGES
entity 128. NURBS surface is mathematically given by

System 1: CAD Direct Control

Constraint Q

Function

Surface
-lﬂl Grid Generation |-| CFD |

Objective
Function

[ CAD

Fig. 3. Implementation of the CAD-based hull form modification into
optimization environment: System 1 (CAD direct control).
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System 2: CAD Emulation

Design Var,

(9
Constraint

Function

- e

Fig. 4. Implementation of the CAD-based hull form modification into
optimization environment: System 2 (CAD emulation).

_ ijo ZTZON ip(WN 4 (0)wi Py
Zf:o Z:;()N ip(U)N g (V)W

where, u and v are parameters, N, , and N, , are normalized
B-spline basis functions of degree p and ¢ in u and v direc-
tions, respectively, P;; are location vectors of control
points, and w;; are weights. Finally, the surface is defined
by (n + 1) * (m + 1) control points, weights and not vectors
Uand Vof n+p+2and m+ g+ 2 elements in u and v
directions, respectively.

The CAD emulation approach offers an advantage over
the former for complete independence from CAD system,
i.e., designers are able to use any CAD system and give/
receive initial/optimized hull form geometry in IGES for-
mat data. A modified surface is defined in correspondence
to new location vectors P", so that

Objective
Function

S(u,v)

where P° and 0P are original and displacement location
vectors. 0P can be design variables of the optimization
problem.

2.2.2. Additive perturbation ( CAD-free) method
With this approach, the use of CAD is avoided and the
deformation of the shape is defined and controlled by using
a few control points, much less than the number of nodes
used for the discretization adopted for the flow analysis.
The method is based on the use of Bezier polynomial
patches. The underlying idea is not to model the body’s
shape with Bezier surfaces (this will leads to inevitable
problems when dealing with non-smooth objects) but just
the deformation d* from the original shape x°. The polyno-
mial curve
n n .
B0 =) (3)1—0""tp,
=0
is a Bezier curve of degree n. A Bezier patch is the surface
extension of the Bezier curve. At the step k the new design
X1 is given by
1 n
xk+l:xk+sk:xo+dk:X0+Z

m
1 pm pn
BBIB.
i=0 j=0 k=0

The geometry is simply modified by superimposing one
or several Bezier surfaces to the original ship’s geometry,
each one accounting for the deformation relative to some

part of the body. Each Bezier patch is controlled by a given
number of control points p that are used as design variables
by the optimizer. Number and position of the patches and
number of control points per patch can be changed in an
easy and flexible way, depending onto the details of the
assigned problem. At the junction between two patches
continuity on the first and second derivative can be
enforced to ensure the fairing of the body’s surface. Appli-
cations of this method can be found in Peri and Campana
[27].

2.2.3. Grid manipulation

Once the ship surface is modified, the volume grid
around the hull should change accordingly with a simple
adaptive algorithm. The same grid manipulation is used
in association with both methods.

During the optimization, the grid is updated at every
optimization cycle as the hull form is modified. This is
accomplished by the use of an algebraic scheme to increase
the computational efficiency. A similar approach was
used by Tahara et al. [37] and Peri and Campana [27]; how-
ever, more simplified scheme was found effective in the
present study. The method is described in the following.
After an initial grid is generated, the geometrical informa-
tion is computed and stored in the memory, that is as
follows:

P=S"(&,8,8),
0 =588,
R=58%(,8,8),

where P, Q, R are grid clustering and stretching functions
defined in the (¢!, &%, 53) directions, respectively. More spe-
cifically, those are normalized metric of (& e, 53) coordi-
nates, such that 0 < S'< 1, and S'=0 and S'=1 for
E=1and & = ¢, respectively. The grid points for the

original geometry are already defined in computational
coordinates, i.e.,

x=x(,8,8),
J’ZJ/o(fl’fz,f}),
z=1z(E,8,8)

and the hull surface is expressed as
x=x(¢" 1,8, x=x,(¢1,8),
y=wE 1), and §y=y,(1,8),
2:20(51,1,53), z:zm(fl,l,é3),

where &2 is taken to be normal direction to the surface, and
values with subscript 0 and m correspond to the original
and modified hull surfaces. The grid points at the outer
boundary is fixed and given by

X = xo(ély éfnax’ 53)7
Y= y0(£17 érzna)(? é’;)7
z=2(¢", G E)-
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In the optimization procedure, the hull surface is modi-
fied but other computational boundaries. In the work of
Tahara [37], all grid points are relocated using P, Q, and
R when the surface is modified, and an iterative manner
is used to complete the procedure. On the other hand, sim-
pler grid relocation method can be applied if the modifica-
tion is assumed to occur in local scale. That is, the method
is based on only Q and simply written as

x=x0(,E,8) + (xa(E,1,8)
—xo(¢,1,EN)(1 =8¢, &, 8Y),

y=0(,8,8)+ (&, 1,8)
—3,(&,1,E))(1 =87, &,8Y),

z=2(&,8,8) + (@(E'1,8)
—2(&,1,8)(1 =87, &,8)).

Although the method is relatively simple and straight-
forward, it was found able to keep the grid quality nearly
equal to the original one.

2.3. Simulation tool

For an advanced fluid dynamic redesign of an existing
vehicle on the base of its drag, accurate fluid dynamics
analysis tools are necessary for guiding the optimizer
toward improved solutions. In the present study, both for
the evaluation of the objective function R, and of the func-
tional constraint on the sonar dome vortices, the use of
free-surface RANS equation solver, whose degree of
reliability has constantly matured during the last years, is
necessary. The corresponding equations are outlined, for
instance, in Tahara and Stern [35]. Two fundamental
parameters (neglecting surface tension effects) come to play
in these simulations: the Froude number Fr= U/(gL)"?
and the Reynolds number Re = ULp/u, being U and L
the speed and the overall length of the ship, respectively.

The Gothenburg 2000 [14] international workshop on
the numerical prediction of the turbulent flow around ships
was focused on testing three modern hull forms, among
which the DTMB 5415 was selected to represent navy
designs. Verification and validation procedures were per-
formed and the workshop showed that total resistance,
wakes and free-surface waves might now be well predicted
by some of the best codes. CFDSHIP-Iowa [40] and
MGShip [11], the two analysis tools adopted in this paper,
were identified as the best two codes on the DTMB 5415
tests case, as reported by Larsson et al. [19].

CFDSHIP-Iowa is a general-purpose, multiblock, MPI-
based high-performance, unsteady RANS CFD code
[40,42] developed for computational ship hydrodynamics
which solves the three-dimensional unsteady incompress-
ible RANS equations. In the version adopted for the
present paper, the grid dynamically conforms to the solu-
tion of the exact kinematic free-surface boundary condi-
tion. Approximate dynamic free-surface boundary
conditions provide boundary conditions for velocity and

pressure. Reynolds-stress closure is accomplished through
k—omega turbulence model. The solution scheme is based
upon the PISO algorithm and is fully implicit. The convec-
tive and viscous terms are discretized with second-order
upwind and second-order central differences, respectively.
The pressure equation is obtained by taking the divergence
of the momentum equations. Further description and
related references can be found at http://www.iihr.
uiowa.edu/cfdship.

MGShip [11] is a multigrid (FAS-FMG), multiblock,
structured grid code, which uses a surface fitting approach
to compute the wave pattern. The mathematical model is
based on a pseudo-compressible formulation of the RANS
equations, approximated in the discrete formulation by a
finite volume technique. A second-order ENO-type scheme
is adopted for non-viscous terms, while viscous fluxes are
computed by a standard centered finite volume approxima-
tion. Reynolds-stress closure is accomplished through Spal-
art and Allmaras [31] turbulence model. MGShip has been
extensively validated and is currently used by the It. Navy,
as well as ship (aeronautical) industries for hydro- (aero-)
dynamic simulations. More information on MGShip may
be found in proceedings of Gothenburg workshops.

For the evaluation of the seakeeping characteristics of
the hulls, the adopted simulation tool (Ship Motion
Program (SMP) [20]) is based on a strip theory approach
(for an outline of the approach see, for instance, Newman,
1977 [23]) and on a potential flow model. The SMP
computes the motions for the ship advancing in arbitrary
headings in regular and irregular seas. Due to the use of
potential flow model SMP is more accurate for computing
vertical motions (as heave and pitch motions) than for the
roll motion, typically affected by the shedding of vorticity
from the bilge keels. For this reason it has been used in
the present paper to evaluate the constraint of the seakeep-
ing (Table 1) which is formulated in terms of the peak of the
Response Amplitude Operator (RAO) curve. For a partic-
ular ship response the RAO is the square of the amplitude
of the regular wave transfer function at each frequency.

2.4. Integration of optimization components and simulation
based design environment

All the above-mentioned optimization components are
integrated to yield two optimization approaches, i.c.,
SBD-A and SBD-B. Optimizations using those environ-
ments are demonstrated at OPU and INSEAN, respec-
tively. In the following, those approaches are summarized
in association with additional information regarding the
simulation based design environment.

SBD Version A: The Narrow-Band Derivative-Free
Approach, the CAD-Based and grid manipulation method,
and the CFD-SHIP Iowa RANS solver version 3.02 com-
pose the SBD-A. For the present application, the System-
2 (CAD Emulation) is selected for the geometry method.
The integrated system also involves the SMP code to eval-
uate the RAO, which are part of constraints described
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Table 1
The definition of the nonlinear constrained optimization problem

Type Definition Note

Objective function minRr(Fr, Re) x € RV«

Functional constraints
On seakeeping

g() 0
Se :05(;—;+0.5§< 1
=3 5
60
He=2<102
€3
0
Pc=3<1.02
&

VEEY @A @} <1, vie ke

On sonar dome vortices

Bare hull, fixed model, Fr = 0.28, Re = 1.67 x 10’

&3, peak heave RAO

s, peak pitch RAO

o0, optimized; p, parent

All the quantities computed for 2* > 0.4

Rc is a circular region placed at x = —0.30,

centered at y = 0.02, z = —0.07, with radius r = 0.018. o, optimized; p, parent

Geometrical constraints
Bow entry angle
Sonar dome dimension

Maximum amplitude variation of 5°
A sonar array of radius Ry and
height Hj should fit inside the dome
Maximum forward position fixed
Lpp and depth fixed

Maximum variation +2%

Sonar dome position
Main dimensions
Displacement

2.5° per side
H;=3m, R,=2.5m in ship length

later. The computations are performed on 64 CPU PC
Cluster (Intel Xeon 2.4 GHz x64; see [36]) which is
recently designed by the authors for the present research
project.

SBD Version B: In the present version of the SBD-B, the
optimizer adopts the variable fidelity approach in the “var-
iable-grid” formulation. Indeed, being the RANS solver
MGShip based on a multigrid technique, we already have
a suite of meshes that could be used to this aim. The finest
and the second finest grid have been assumed as the high-
and the low-fidelity models. The Derivative-Based Vari-
able-Fidelity Approach, the Additive Perturbation Method
with the grid manipulation described before, and the
MGShip RANS solver, composes the SBD-B. As for the
SBD-A, the SMP code is used to evaluate the heave and
pitch RAOs. The computations are performed on a Pen-
tium IV (1.7 GHz).

3. Verification and validation approach for SBD

The growing need and importance of CFD accuracy
estimation pushes toward the adoption of quantitative
assessment of numerical and modeling simulation errors
and uncertainties. These information can be gathered
through a V&V study, a procedure that needs numerical
uncertainty analysis (iterative and grid convergence stud-
ies) and benchmark experimental data and uncertainty
analysis and can be conducted for both integral quantities
and local flow variables. For complex geometries, such as
those arising in practical applications, these procedures
may imply a considerable computational effort, since the
necessary simulations are required to be as close as possible

to the asymptotic range for the study to be accurate. This
difficulty is partially responsible for the slow diffusion of
these procedures, but the need for a quantification of the
errors in the prediction is increasing by the hour, and
eventually the CFD community will be forced to complete
the predictions with an estimation of the numerical
uncertainties.

The scenario changes substantially when simulations are
used in a design cycle to “guide” an optimizer through the
design space in the quest for an optimum. In this case, the
successful application of the V&V approach to single sim-
ulations might well certify the accuracy of the numerical
tool adopted in the optimization process but, on the other
end, it does not imply the success of the optimization. In
other words, the certification of an isolated numerical
solution is ineffective from a designer standpoint, and the
fundamental issue is the development of a procedure to val-
idate the optimizer as a whole, involving performance’s
trends rather than their absolute values: indeed, the ulti-
mate goal of the designer is the identification of a new
shape showing improved performances with respect to an
original design.

Validation of trends was discussed by Coleman and
Stern [9] wherein it is noted that the inclusion of the
correlated bias errors in the estimate of the experimental
uncertainty offers the chance for a significant reduction in
the experimental uncertainty, allowing for a more stringent
validation criterion based on the difference more than on
the absolute magnitudes of the variables. In the following,
Coleman and Stern [9] validation approach for trends is
extended to include detailed considerations on verification
procedures, as done by Stern et al. [33,41] for simulations,
i.e., absolute values.
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A two stages V&V procedure is here adopted. The first
phase concerns the estimate of simulation uncertainty rela-
tive to the initial and final designs separately and the meth-
odology is briefly summarized here for completeness. The
procedure can be applied to any simulated variable, both
local and global. In a second stage, the standard V&V
approach is modified to deal with the optimization process,
focused on the trend of the objective function to be
minimized.

3.1. V&V approach for single numerical simulations

The simulation error Jg is defined as the difference
between a simulation result % and the truth J and is com-
posed of simulation modeling dgn and numerical dgyn
errors. The equation error is

8s =S — T = dsn + Ssur. )

The simulation modeling error dsy, is defined as the differ-
ence between the model .# and the true .7 values, while the
simulation numerical error dgy is defined as the difference
between the simulation & and the model .# values

Ssm=M—T, dsn=S— M, (3)

where ./ is obtained by an exact solution of the continuous
equations used to model the truth 7. The uncertainty
equation corresponding to the error Eq. (2) is

Ué = UgN + U%M- (4)

The Verification procedure is dedicated to the
assessment of the simulation numerical uncertainty Ugy
and, under some assumptions, to the estimation of dgy.
The latter is typically decomposed into contributions from
iteration number Jy, grid size dg, time step ot, and other
parameters Jdp, and an analogous decomposition can
be applied to simulation numerical uncertainty Ugzy,

giving
Uiy = Ui + U + U + Us. (5)

In the present case Jp is neglected and, since only steady-
state simulations are performed, Jdt is assumed to be zero:
hence, the previous uncertainty equation simplify into

Ugy = Ui + Ug,. (6)

Validation is the complementary part of verification, i.e.,
the process of assessing the simulation modeling
uncertainty Usy by using benchmark experimental data.
Analogously to what done for the simulation error, we
may introduce Jp as the error on the data defined as the
difference between a measurement & and the truth
7 (0p = 2 — T) which in turn leads to

D —p = — . (7)

The comparison error & is then given by the difference
between the data 2 and the simulation .%:

=9 —% =0p— s =0p — (0sma + Ospp + Osn), (8)

where error simulation modeling error Jsy has been
decomposed into the sum of dspp, error from the use of
previous data (such as fluid properties) and dgya, error
from modeling assumptions

Osm = Osma + Ospp- )
The corresponding uncertainty equation is
U = U, + Ugy + Ugy

= Uz/‘ + UEMA + UgPD + UéN' (10)
To determine if validation has been achieved, & must be
compared to the validation uncertainty Uy, defined as the
combination of all the uncertainties contained in U% that

we know how to estimate, i.e., all the uncertainties but
2
Usma

U%/:Ué_UéMA:Ué"‘UéPD"’UéN- (11)
Finally, if
16| < Uy, (12)

the combination of all the errors in & and . is smaller than
or equal to Uy and validation is achieved at the Uy
interval.

3.2. V&V approach for CFD-based optimization

The V&V procedure illustrated before can be used to
estimate the accuracy of the numerical tools adopted but
it cannot be of any help in assessing the success of the opti-
mization process. As previously mentioned, the focus in
this case has to be posed on the computed and measured
trends of the performances of the parent and final hulls.

The procedure illustrated in Section 3.1 can use any sim-
ulated variable to monitor the quality of the solution. On
the contrary, the V&V approach for CFD-based optimiza-
tion has to be specifically applied to the objective function.
Let us define %, and % as the numerical simulation value
of the parent and the optimized designs, respectively and
define the corresponding numerical uncertainty as Ugy
and U 4 (see Fig. 5). We also introduce &, as the experi-
mental data for the parent hull and &, as the data for the
optimized design, both with an associated experimental
uncertainty Ugy, and Uge. We also define

dg =S5 — L0, (13a)
Aoy = Dp— Dy (13b)

as the expected (44) and the measured (45) differences
between the two hulls. Obviously, if the problem is one
of minimization of some objective function, 4, > 0 and
Ag > 0 imply improvements of the final shape with respect
to the parent hull.

To estimate the simulation error of the optimization
process, d,4, we can build on the analysis presented in
the previous paragraph, decomposing the simulation error
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3
Objective
function

Optimal
design

Fig. 5. Schematic representation of the set of data needed for the
verification and validation approach for SBD. &, and %, are the
numerical simulation values of the parent and the optimized designs. Zp is
the experimental data for the parent hull and %, as the data for the
optimized design, both with an associated experimental uncertainty Uy,
and Uge. Expected (45) and measured (44) differences between the two
hulls are also shown.

into a numerical and a modeling component. Considering
Egs. (2) and (13a), we obtain:

Oy = ((%1 + 55/1) - (5(;‘ + 5(;//)

= (5{/)1 - 5Cf;t) + (5{/)// - 5,(;,,%/% (14a)
610 = (6] — ). (14b)

Assuming that the continuous equations used to model the
problem remain valid for both the parent and the opti-
mized hulls, it can be now reasonably argued that the mod-
eling errors &7, , and &, , are equal and that the last term
of the RHS in (14a) is zero. In other terms, recalling the
definition (3), we write

5?// - 5(«'/// =l — T, —[M - f](ﬁ =0 (15)
and Eq. (14a) simplifies into the following:
Sag = (65— 85.1). (16)

Verification of the trend: With reference to the uncertain-
ties, we now need a condition which states that if the
expected improvement A, is greater than the simulation
numerical noise U 44 (according to (15) the simulation mod-
eling errors for the parent and the optimal hull cancel each
other), then the optimized design is numerically verified.
From the error Eq. (16) hence follows the condition:

4y > Uy = (U, + U%)'
12
= (U .zc/i,r.;o + U.zcﬁ/t/‘cf‘) / : (17)

Validation of the trend: In a similar manner, if the
improvement measured in the experiment, A, is greater
than the experimental noise, then the optimized design is
experimentally verified.

45| > (U2, + U2 )"? = Uy (18)

Optimizer’s validation: The definition (8) of the compar-
ison error & has now to be modified into an optimizer error,
& 4, focused on the trend. Hence, &, can be defined as the
difference between the measured and the expected improve-
ments, 4, and Ag:

E4=A4g — Ag. (19)

From (17) and (18), the corresponding uncertainty equa-
tion is
Us, = (Ul + U7 + UG ) (20)

The last step is to state that if the difference between the
measured and the expected improvements is less than the
uncertainty Uy,, that is

|64l < Usg,. (21)

We may finally say that the optimized solution is validated
at the interval Ug,. It is worthwhile to observe that, as a
consequence of (15), the condition (21) is stronger than
the corresponding (12) because of the cancellation of the
modeling errors in the optimization process. In other
terms, the optimizer can be validated with a significant
reduction in the interval of uncertainty.

4. The definition of the optimization problem

For the complete definition of the design problem to be
solved, the following fundamental items must be precisely
specified: (1) selection of an initial design to be optimized
and of the extension of the modifiable region(s); (2) choice
of the objective function to be minimized plus number and
position of the design variables; and (3) definition of the
problem’s constraints. These steps are described in this
paragraph.

4.1. Initial design

The initial design is Model 5415, which was conceived as
a preliminary design for a US Navy surface combatant.
The hull geometry includes both a sonar dome and tran-
som stern, propulsion is provided through twin open-water
propellers driven by shafts supported by struts. There is a
large experimental database for Model 5415 due to an
international collaborative study on experimental/numeri-
cal uncertainty assessment between IITHR, INSEAN and
the Naval Surface Warfare Center, Carderock Division
(NSWC), see Stern et al. [32]. The validation data includes
global and local measurements, such as total resistance,
boundary layer and wake, longitudinal wave cuts, bow
and transom wave fields, and wave breaking. Two different
views of the initial design are reported in Figs. 7 and 8 in
comparison with the final, optimized shapes.

4.2. Objective function and design variables

The objective function f to be minimized is the total
resistance Rt of the model 5415 advancing in calm water
at a speed of Fr=10.28. This condition corresponds to
Re=1.67x 10" when using a reference length of 5.72 m,
that is the length of the ship’s model used in the experimen-
tal validation (see last paragraph).

The modifiable region is only the foremost part of the
ship, i.e., bow and the sonar dome (see Fig. 7), about
20% of the overall ship surface. As explained in the
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introduction, this is the typical redesign problem of some
part of an existing complex system, a necessity which often
arises in real industrial applications. The test is a difficult
one, because the optimizer has a reduced freedom and
hence expected improvements are small. Also, the problem
is solved for the bare hull. The geometrical complexity is
hence partially reduced (e.g., no rudder and propeller will
be considered here) but it must be underlined that in the
bow redesign problem, both propeller and stern append-
ages show negligible influence.

A different number of design variables have been
adopted in the two SBD frameworks. Indeed, number
and location of the variables are closely connected with
the specific strategies adopted to modify the ship’s geome-
try and the computational meshes. For SBD-A, the
displacements of the NURBS control points in the CAD-
Based approach are the design variables of the optimiza-
tion problem. Design actions of widely used CAD tools
are emulated, so that control points defining the bow and
sonar dome are moved in confined direction. That is, con-
trol points for the bow move only along the transverse
direction (design variable d;,). Those for the sonar dome
move in transverse and longitudinal directions with d,,
and d, respectively. Control points are adequately
grouped in order to avoid unrealistic shape modification
(the bow and sonar dome groups include 15x 14 and
15 x 7 points, respectively) and all the points in a group
move with equal displacement in the same direction. For
SBD-B, the variables are the control points of the patches
used in the CAD-free approach. More precisely, 11
variables have been used for the parameterization of the
deformation: with reference to Fig. 6, two variables serve
for y-modifications of the region above the dome, four
for the y-modification of the dome, three for the x-modifi-
cation of the dome and two for the z-modification of the
keel line below the dome.

4.3. Functional and geometrical constraints

To introduce elements of a real, complex design problem,
functional and geometrical constraints have been enforced.
The functional constraints here adopted are relative to
seakeeping and propulsion. In naval hydrodynamics, sea-
keeping characteristics give a measure of the behavior of
the ship at sea: in this problem, the monitored quantities

i z,Eq

Fig. 6. Sketch of the problem. The ship is advancing with forward speed
U in head sea.

are the peaks of the heave and pitch Response Amplitude
Operator (RAO) curve for head seas (the RAO is the
square of the amplitude of the regular wave transfer func-
tion at each frequency). Also, since sonar dome vortices
quite often interfere with the propeller inflow affecting its
performances, a functional constraint was put on the sonar
dome vorticity as a source of non-uniformity of the flow at
the propeller disk.

Geometrical constraints are imposed on the design vari-
ables, on the sonar dome volume, on the bow entry angle,
on the displacement and on the principal dimensions of the
ship. A complete definition of the problem, objective func-
tion and constraints, is given in Table 1.

5. Numerical results: the optimized designs

In the following we report the numerical solutions of the
optimization problem defined before using the two SBD
environments described in this paper. Indeed, being the
SBDs assembled with different components (optimizers,
numerical solvers, design tools) it is important to underline
here that two different final shapes were expected. How-
ever, we anticipate that an analysis of the major character-
istics of the two shapes will show that the final solutions
display common geometrical trends. Hereinafter, the two
final designs will be indicated as 5415-A (obtained using
the SBD-A) and 5415-B (the SBD-B optimized shape).

While in the experiments the models are typically free to
dynamically adjust their equilibrium under the action of
the dynamic pressure field, the optimization process was
carried out with the model in fixed condition: SBD-B
assumed the model to be fixed at even keel, while SBD-A
adopted the sinkage (o) and trim (t) values (shift and rota-
tion around z and y axis, respectively, see Fig. 6) measured
for the original 5415 model at Fr = 0.28. A free-model sim-
ulation was finally performed with SBD-B, to check the
sensitivity to the exact sinkage and trim values. Results will
be discussed later.

After some indications about the amount of computa-
tional work required in the solution of the design problem,
the geometry and performances of the two improved
shapes are described in comparison with those of the origi-
nal design.

5.1. Numerical parameters and computational effort

The computational meshes used during the process were
relatively coarse (of the order of 250 K grid points), even if
they proved to be successful in guiding the optimization
algorithms. However, the final shape was re-computed with
a much finer grid (of the order of 1.75 M grid points) to
check the estimated improvements.

SBD-A: The GA parameters adopted in the SBD-A
optimizer for this test case are as follows: crossover rate =
0.75, mutation rate =0.30, and population size = 60.
As described earlier, the population size coincides with
number of available parallel processors. The crossover
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and mutation rates are determined through preliminary
numerical tests. The optimal system parameters may be
found by further investigation, but that is left for future
work. In the present study, the best solution in 50 genera-
tions is selected as a final solution (i.e., model 5415-A), in
which the solution was, in fact, obtained at the 21st gener-
ation. For each generation, RANS code is executed only
once per processor, where 5000 global sweep iterations
appeared to yield sufficient convergence. CPU time to pro-
ceed 10 generations is about 4 days by using PC-Cluster
parallel computing environment mentioned earlier. Advan-
tage of the present high performance parallel architecture
is evident, since the CPU time would be 60 times larger if
the conventional serial computation is adopted.

SBD-B: The computational domain extends 1.0 Lpp for-
ward, 1.0 Lpp backward and 1.25 Lpp aside. A numerical
beach is placed at the end of the grid, in order to damp
out the outgoing waves. The grids are block-structured
with hexahedrical elements, and the transom region has
been properly modeled with a dedicated block. On the
faces common to two blocks the cell distribution is unique.

The SBD-B used the variable-fidelity approach
described before and only 36 calls to the high-fidelity solver
(i.e., the finest grid) were required, while 314 calls to the
low fidelity solver (the coarsest grid) were used. The CPU
times for function evaluation with the low and high fidelity
solvers are about 900 s and 5400 s, respectively. As a con-
sequence, the complete optimization time with SBD-B

0.11
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0.08

0.07

Original
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-0.01
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has been roughly about 477,000 s (the time spent in grid
and geometry manipulation is almost negligible). On the
other hand, only 304 objective function values would have
been necessary (after some saving) by using the high-fidel-
ity model alone, with a total CPU time of 1,641,600 s. The
final CPU time hence is only 29% of the total time needed
by the high-fidelity procedure alone.

5.2. Optimized shapes and geometrical constraints

The optimization processes ended with two different
geometries (Figs. 7-9) that however display some geomet-
rical similarities as for the general trend. Indeed, a careful
analysis of their shapes shows:

¢ a reduction of the maximum width of the dome (and of
the dome volume), decreased by about 20% in the 5415-
A case and by about 40% in the 5415-B shape;

e an increase of the length of the dome: the 5415-A sonar
dome extension in the forward (x) direction (see Fig. 13)
is about 10% of the total length of the dome itself. The
trend toward a forward extension is observed also for
the 5415-B, even if, due to the adopted grid topology
which do not allows large variations on the bulb length
in this region, the forward extension is only 1%;

e looking at the region immediately above the sonar
dome, the reduction of the entry angle and the bending
of the buttocks (hull contours at equal y). Differences

Original

Optimal

Ve

Fig. 7. Comparison of body plan between the original and optimal hull forms. Original 5415 vs. 5415-A (left) and original 5415 vs. 5415-B (right). Some
transversal sections are numbered according to the conventional way to represent hull’s geometry in ship hydrodynamics: the hull is divided into 20
sections, starting from the most aft (stern) station. Modifications were allowed from the foremost section (stem) down to Section 16.

Fig. 8. Perspective view of the bow and sonar dome geometry. Original 5415 (left), 5415-A (center) and 5415-B (right).
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Fig. 9. The constraint on the sonar dome is verified both the optimized
models 5415-A (left) and 5415-B (right). The two overlapping cylinders
inside the dome represents the sonar arrays.

extend from the stem down to station 16 for model
5415-B, while for model 5415-A they remain confined
between the extreme bow and station 18 (Fig. 7).

As a general comment, the volume reduction for the
model 5415-A is rather uniform along the dome axis and
the overall shape of the new dome is similar to the original
(but for width and length). The 5415-B dome is slightly less
conventional than the other two designs: the overall shape
is more triangular (see Figs. 7 and 9) and in some points the
hull surface is very close to the sonar constraint (Fig. 9),
leading to a greater volume reduction.

Fig. 9 clearly shows that in both cases the constraint on
the dome dimension is satisfied and the sonar fit inside the
bulb. A close-up view of model 5415-B seems to display a
slight violation of this constraint near the bottom corner.
A careful analysis demonstrated that the minor violation
is located in between two grid points and it is difficult to
check geometrical details whose dimension is below the
grid resolution. At all events, the minor violation is extre-
mely small, being of the order of half of the grid cells near
the body. The other geometrical constraints (entry angle
and major dimension) have been successfully satisfied, as
well as the displacement constraint, verified during the
experimental campaign (see Section 6.2).

6. Performances analysis

In this paragraph we check the functional constraints
and analyze the performances of the two new designs” as
predicted by the simulations, in comparison with those of
the parent hull 5415. Results from an experimental cam-
paign are also illustrated here, while data relative to the
V&V analysis applied to the two SBDs will be presented
in the next chapter. It has to be remembered that the opti-
mization was carried out with the hull fixed. An estimation
of the effects of the ship’s sinkage and trim is however given
in the following.

2 Influence of the particular solver on the final solution was not
evaluated because, due to the different requirements in terms of grid
topology, an exchange of the grid between the two solvers was impossible.

6.1. Performances and functional constraints prediction

The numerical results for the objective function, summa-
rized in Table 2a (for the SBD-A) and b (for the SBD-B),
show that both the SBDs were able to identify improved
designs with lower total resistance with respect to the par-
ent hull 5415.

The 5415-A model (Table 2a) displays a decrease of the
objective function of —5.32% (from 45.40 N to 42.98 N).
The optimization was performed with the model fixed
at the sinkage and trim values measured at Fr=0.28
(6 =829 mm, 7=0.05°). A different way was followed
with the SBD-B (Table 2b). The optimization was per-
formed with the hull fixed at even keel (¢ =7 =0) and,
once the final shape (5415-B) was obtained it was let free
to sink and trim, assuming a final value of ¢ = 10.06 mm,
1=0.09° which correspond to a total resistance of
44.89 N. This value has to be compared with the 5415 total
resistance 46.28 N at the sinkage and trim values measured
at Fr =0.28 (¢ = 8.29 mm, 7 = 0.05°), giving a final reduc-
tion of the objective function of —3.01%.

Improved resistance reflects on the computed wave pat-
tern too, as reported in Figs. 10 and 11. The wave field
caused by the optimized hulls is globally smoother and
with a smaller bow wave, a clear sign that the wave compo-
nent of the ship’s resistance has been reduced. A typical
quantity to be monitored in these analyses is the wave pro-
file along the hull (Fig. 12). Both the optimized models
remarkably reduce the amplitude of the bow wave, 5415-
A more then 5415-B. Furthermore, the steepness of the first
wave and the first throat trough around model 5415-B are
also appreciably smoothed. Fig. 13 shows improvements in
the pressure coefficient distribution, with reduced low-val-
ues regions. The pressure pattern on the bow varies more
gently and pressure gradients are reduced in the modified
region.

Seakeeping computation have been performed to verify
the corresponding functional constraints and the relative
RAOs in head seas are showed in Fig. 14, while in Table
3 the threshold values of the constraints are reported.

Table 2
Optimization results for the objective function R,

R (N) o (mm) 7 (deg)
(a) SBD-A
5415 45.40 8.29 0.05
5415-A 42.98 8.29 0.05
(b) SBD-B
5415 46.28 8.29 0.05
5415 43.92 0.00 0.00
5415-B 41.84 0.00 0.00
5415-B 44.89 10.06 0.09

Both the SBD frameworks performed the optimization with the model in
fixed condition. SBD-A assumed the sinkage and trim of the 5415 at
Fr=0.28 as fixed. SBD-B put the 5415 model at even keel and, after the
optimization, moved the new model 5415-B to free sinkage and trim
condition. Relative R, reductions are —5.32% and -3.01% for SBD-A and
SBD-B, respectively.
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Fig. 10. Wave contours (non-dimensionalised by the model length) computed with the RANS free surface solver CFDSHIP-Iowa, adopted in SBD-A,
around the original (bottom) and optimal (5415-A, top) ship model. Solid and dashed lines indicate positive and negative free surface height, respectively.
The overall wave field is on the left, while on the right a close-up view of the bow region is shown. The bow wave is reduced, as well as the depth of the first

throat.
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Fig. 11. Same as Fig. 10. The wave contours showed here (non-dimensionalised by the model length) are computed with the RANS free surface solver
MGShip, adopted in SBD-B. The close-up view of the bow region shows that the maximum wave height is reduced, as well as the depth of the first throat.
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Fig. 12. Wave profiles along the hull in the bow region, as computed with CFDSHIP (left), and with MGShip (right) for the original and the two
optimised shapes at the design speed. Both the RANS solvers predict a lower wave amplitude, a clear indication of a reduced wave component of the total

resistance.

Model 5415-B show slightly improved seakeeping, more
for the heave than for the pitch RAO, as a consequence of
the change in the bow volume. Model 5415-A heave has
been improved too, while the pitch response is substantially
similar to that of the original hull. Hence, both the hulls
respect the constraints on the vertical motions. Another
functional constraint was imposed onto the problem (see
Table 1), relative to the vorticity shed in the fluid by the
dome. As stated before, this quantity is indirectly con-
nected with the propulsion efficiency, since the sonar dome
vortices typically travel along the side and the keel of the
ship and finally interact with the flow seen by the propel-
lers. The stronger are the vortices the less uniform is the

propeller inflow. A control region was placed immediately
past the sonar dome where the mean value of the axial vor-
ticity should not overcome the average relative to the origi-
nal hull. The axial vorticity contours reported in Fig. 15
clearly show that the constraint has been satisfied. The
two final models reduce the core of the main vortex, which
appears to be confined near the hull surface.

6.2. Experimental data for validation
To assess the success of the optimization process,

obtaining basic data for the validation step, a dedicated
experimental campaign was carried out. The campaign
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Fig. 13. Pressure coefficient (C,) contours on the bow and the sonar dome of the original (left) and the optimal (right) ship model. Top, original 5415 vs.
5415-A, both computed with CFDSHIP-Iowa. Bottom, MGShip predictions for the original 5415 and the final solution 5415-B.
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Fig. 14. The behavior of the ship in waves has been chosen as a functional inequality constraint. Heave (left) and pitch (right) frequency response (RAO)
in head seas have been selected as performances to be monitored during the optimization process. Both the optimized models satisfy the requirements.

Table 3
Constraints on the seakeeping behavior of the two optimized ship (for the
definitions see Table 1)

5415 5415-A 5415-B Constraint
Hc 1 0.983 0.981 1.020
Pc 1 0.996 0.970 1.020
Sc 1 0.989 0.975 1.000

used an existing replica of the DTMB 5415 (the INSEAN
C.2340 model) already adopted in previous experiments
[32]. Scale factor of the model was 24.824, giving a total
length of 5.72m a breadth of 0.771 m and a draft of
0.248 m. This values are compatible with the main dimen-
sions of the INSEAN basin no. 2 (250 m long, 9 m wide
and 4.5 m deep) and avoids blockage effects. All the resis-
tance and seakeeping tests were carried out in this basin,
equipped with a carriage capable of a maximum speed of
10 m/s with a precision on the forward velocity of about
0.1%. To further reduce the uncertainty connected to the
model geometry, only the bow part of the new designs

was build while the foremost part of original model was
cut off and the model was prepared for the mounting of
the two new bows (Fig. 16).

Displacement has to be measured for all the models,
since the draught was fixed during the optimization pro-
cess. It was found that the displacement of both the new
hulls was reduced with respect to the original one in the
limit posed by the constraint (max. 2%). Displacement
for model 5415-A was 546.6 kg (8362 tons in ship scale,
—0.44%), whereas for model 5415-B was 542.8 kg (8304
tons in ship scale, —1.13%) while for the original model
was 549 kg (in ship scale, 8398 tons).

During the tests a load cell with a reading range of
200 N has been used. The same load cell has been applied
for both the models and during the whole measurement
campaign. Towing force has been registered during the
experimental tests, together with the bow and stern sink-
age. Uncertainty analysis was performed for two speeds:
Fr=0.28 (cruise speed and also design speed) and
Fr=0.41 (top speed), recording ten different resistance
time histories. An admissibility test has been performed
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Fig. 15. Comparison of axial vorticity contours between the original and optimal hull forms (X = 0.2: behind sonar dome). The control region, placed in a
plane orthogonal to the forward direction, is reported as a black circle. Original 5415 vs. 5415-A computed by CFDSHIP-lowa (left), original 5415 vs.

5415-B computed with MGShip (right).

Fig. 16. Pictures for the experimental validation campaign. The original 5415 model (left) with the fore part cut off to host the optimized bows. In the
center, the 5415-A bow mounted on the original body and ready for the tests. On the right, the bow of the 5415-B ready to be mounted.

on data, based on the variance of the whole dataset. Bias
errors have been assumed from previous experiments [32].

The success of the optimization processes was confirmed
by the experimental measurements. Reductions of the total
resistance with respect to the original hull are directly
reported in Fig. 17 as a function of the Froude number
(values below 0% represent improved designs). At the
design speed (Fr=0.28) the measured reduction of the
total resistance is about 3.80% for both the optimized
models, while the uncertainties are clearly smaller than this

Resistance reduction (%)

Fn

Fig. 17. Experimental validation of the numerical results. Resistance
reduction (%) as a function of the Froude number for the two optimized
models. Error bars are plotted for Fr = 0.28 and Fr = 0.41.

improvement. It may be of interest to look at off-design
conditions too: in the whole tested speed range, the trend
is similar for both the optimized models. A maximum
reduction of about 6% is obtained at Fr = 0.20, while at
the highest speed (Fr=0.41) a very small increase is
measured which however is well inside the error bar of
the experimental uncertainty.

7. Verification and validation approach for SBD

The V&V analysis summarized in the following and
reported in Tables 4 and 5 is based on the procedure illus-
trated in Sections 3.1 and 3.2. Initially, the numerical
results are verified and validated as if they were single, iso-
lated simulations (Table 4; Uspp has been neglected in this
paper). Finally, the two optimizers have been validated
according to the new procedure developed in Section 3.2
(Table 95).

7.1. V&V for single numerical simulations

SBD-A: Grid convergence was studied by performing
steady simulations using three computational grids with
refinement /2 in each coordinate direction, i.e., of fine,
medium, and coarse grids. The grid sizes of those grids
are 1,779,648, 654,192, and 238,760, respectively. The
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Table 4
V&V procedure for single numerical simulations relative to an integral
quantity (the total resistance R;)

RANS Model 4 9 & Ug UG USN UV
solver N (N (%) (%) ) %) (%)

CFDSHIP- 5415 4540 45.10 0.65 0.29 2.00 2.00 2.02

Towa 5415-A 4298 4345 1.08 0.53 2.00 2.00 2.07
MGShip 5415 46.28 45.10 2.61 029 2.61 2.61 2.63
5415-B 4489 4348 325 030 1.74 1.74 1.76

The quality of different RANS simulations on the parent hull and on the
two optimized shapes is assessed separately following a V&V procedure
[33]. Reported values of & refer to the total resistance R, (N) scaled at a
temperature of 15 °C.

Table 5

The modified V&V procedure for CFD-based optimization applied at the
optimization results obtained with SBD-A and SBD-B (£ = parent hull,
(0 = optimized hull)

Optimization Ay = A(j = UAyf UAL] ‘(«)KA ‘ UgA
process S»—So Dy — Do

SBD-A 5.32 3.66 2.83 0.61 1.66  2.89
SBD-B 3.01 3.61 3.14 0.41 0.60  3.17

All values are in percentage. In both cases |£,| < Uy, indicating that the
optimized solutions are validated at the corresponding interval Ug,.

predicted value of the 5415 total resistance value reported
in Table 4 is & = 45,40 N, very close to the experimental
data, giving |§| = 2 — & = 0.65%, while for the 5415-A
the estimated total resistance is lower than the experimen-
tal value, giving || = 2 — & = 1.08%.

Uncertainties in the data Uy are 0.29% for the original
and almost doubled for the 5415-A (0.53%). Anyhow, in
both cases the comparison error & is smaller than the val-
idation uncertainty Uy%, hence the solution for total resis-
tance is validated at the Uy interval.

SBD-B: Being MGShip a multigrid solver, a suite of
refined grids is naturally available. Four grid sublevels were
used with refinement ratio 2 in each coordinate direction
and the three finest have been used in the V&V procedure.
The predicted value of the total resistance of the parent hull
is & =4628 N (Table 4), with an error of about
|6] =2 — 9 =2.61%. For the 5415-B the estimated total
resistance is again greater than the experimental value,
and the error is larger |§| = 2 — ¥ = 3.25%.

Uncertainties in the 5415-B data Up are almost equal to
those of the 5415. Anyhow, in one case (for the original
hull) the comparison error & is smaller than the validation
uncertainty Uy%, and hence the solution is validated at the
Uy interval. The solution is not validated at the Uy interval
for the 5415-B model, likely due to a combination of fac-
tors: a larger error & and a smaller grid error which reduces
UVO 0.

7.2. V&V approach for CFD-based optimization

The V&V procedure for CFD-based optimization, illus-
trated before, is applied to the present optimization results
to establish the success of the optimization.

The expected improvement A, estimated by SBD-A is
5.32% while the actual improvement A, is smaller.
However, the error &, is smaller than the validation
uncertainty U,, and we finally may say that the optimized
solution is validated at the interval Us, = 2.89%. SBD-B
predicts a smaller improvement 45 of 3.01%, however
very close to the actual improvement Ag. The error &, is
smaller than the validation uncertainty Uys, and also the
SBD-B optimized solution is validated at the interval
Us, =3.17%.

8. Conclusions

Two different basic SBD versions have been developed
and tested in a nonlinear constrained optimization prob-
lem. Experimental tests have been carried out on the two
final optimized models, showing improvements in the
objective function (the total resistance of the ship at model
scale) while other important qualities of the ship, like the
seakeeping behavior and the hydrodynamic noise produce
by the sonar dome vortices, are preserved. This is a valu-
able results, considering the small modifications allowed
and the good initial performances of the original model,
and proves the applicability of RANS solvers inside an
optimization cycle and the reliability design techniques
based on simulations. Furthermore, the standard V&V
procedure for CFD simulations has been extended to deal
with CFD optimization results, focusing on the trend of the
objective function. Its application to present results has
validated both SBD approaches.

This application represents a first step into a coopera-
tive project among ITHR, OPU and INSEAN which is
extending toward multiobjective, global optimizations
[6,38], hence removing the intrinsic limitations of local
optimization algorithms. Indeed, typical feasible design
spaces of nonlinear problems are non-convex and often
non-connected, due to the nonlinear geometrical and
functional constraints that have to be enforced to prevent
unrealistic results and to provide a final, meaningful
design. As a direct consequence, local optimizers may
encounter convergence difficulties, besides the impossibility
of jumping from one subset to another of the feasible
set. Furthermore typical objective functions of hydrody-
namic character display almost ever a multimodal nature,
so that local optimizer are easily trapped in sub-optimal
minima.

The adoption of global optimization algorithms may
greatly reduce the risk of stopping the search at sub-opti-
mal solutions. However, even if the use of RANS codes
is facilitated by the availability of high performance com-
puting platforms, the cost of one simulation is still rela-
tively high. Under these circumstances the development
of SBD frameworks which combine these costly analysis
tools with global optimization algorithms may appear as
a paradox, but design engineers of marine, aeronautical,
automotive transport systems, are very much tempted by
taking this direction [8].
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