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The ultimate goals of this two-part study are the advantages and de’ ciencies of appli-
cation of camber to dry-chine, stepped-planing forms. The present paper is limited to
the correlation of a relatively new theory with existing data to qualify it for use in a later
paper which will predict the hydrodynamic characteristics of practical forms without and
with cambers. Following a brief account of the pertinent literature, a mathematical model
is developed via slender-body theory. It is a generalization of M. P. Tulin’s (1957) semi-
nal analysis of ‘ at, cambered, delta-wing waterplanes to include deadrise, together with
a departure from the oversimpli’ ed Wagnerian (1932) theory ’ rst introduced by Vorus
(1996). It is an independent, less complicated development which con’ rms Vorus’s
result for his special case of straight-sided wedges. Detailed comparisons of all the
hydrodynamic coef’ cients with data from model tests of prismatic hulls show that this
theory is superior to that of Wagner. A very simple formula for maximum pressures is
shown. Comparisons with the extensive theories of Zhao and Faltinsen are discussed.
The theory is justi’ ed for extension to more pragmatic forms within the scope of the
theory.

Introduction

The ultimate principal objectives of this study are effects of
camber on all hydrodynamic characteristics of slender, stepped-
planing hulls of various shapes operating in the so-called
chines-dry mode. Chine is de� ned by the knuckle formed by the
intersection of the rise of the bottom and the more-or-less vertical
side of a hull. Although extensive experimental and theoretical
efforts have been devoted to the combined in� uences of trim and
deadrise angles on lift, drag, pressure distribution, and center of
lift of prismatic forms, relatively little has been done to explore
bene� ts and de� ciencies of longitudinal camber. Characteriza-
tions of the � uid dynamical aspects of prismatic surfaces, princi-
pally by model experiments, have provided the essential basis for
pragmatic design of planing craft over many decades. Existing
craft generally have lift-to-drag ratios around 8 or less, whereas
experiments with cambered models of zero deadrise have shown
values around 15. It would appear to be of use to explore the
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possibility of drag reduction by application of relatively simple
theory.

Planing may be de� ned to occur when the Froude numbers
based on principal dimensions are suf� ciently high that the weight
of the craft is supported almost totally by the dynamic compo-
nent of the pressure distribution, i.e., the static pressure is negli-
gible. Another de� nition, adopted by Savitsky (1964), is related
to the ventilation of the stern and the lift-drag ratio becomes
independent of his speed coef� cient. This de� nition requires the
inclusion of gravity in the calculation of lift. Herein, the � rst def-
inition is adopted as the inclusion of gravity at this stage need-
lessly complicates any mathematical model. Moreover, the speeds
of major interest for planing in calm water ensure satisfaction of
this criterion.

To a theorist, � ow about a planing boat presents a nonlinear,
free-boundary problem in a viscous � uid. Nonlinearity arises from
the local distortion of the water surface which very importantly
increases lift and wetted surface for the restrained hull. Viscosity
must be allowed as experiments show that it is the cause of about
40% of the drag at optimum trim of prismatic forms! Nowadays
it is the fashion to attack such formidable problems by appli-
cation of boundary-element procedures involving huge matricies

MARCH 2001 0022-4502/01/4501-0059$00.53/0 JOURNAL OF SHIP RESEARCH 59



to invert two-dimensional integral equations with highly singular
kernels, and to treat the viscous � ows via Navier-Stokes equa-
tions with turbulence “models.” To be sure such methods must
be used whenever assumptions for simpler mathematical model-
ing do not accommodate reality. Fortunately, because of practical
considerations many planing hulls must be slender and operate
at small trim angles from 3 to 6 deg and have deadrise angles
decreasing from some 35 to 5 deg from bow to stern. These com-
binations generally result in waterplanes of aspect ratios of one or
less, thereby opening the problem to application of slender-body
and thin-section theory.

Following a brief review of the pertinent literature (as known
by the author), construction of a model of the � ow induced by a
fairly general class of delta-wing like waterplanes in chines-dry
mode is developed in detail. This model applies to the admittedly
limited, but yet important, chines-dry operation because of the
limitations of slender-body theory. This hull form is applicable
to seaplanes and is not that which is widely employed in power
boats that have waterplanes of delta-wing shape forward followed
by a rectangular after-part. Herein the hull class is specialized to
the very important family of prismatic forms for which data have
been obtained from a systematic series of model tests. Successful
correlations with these data are essential to justify the applicabil-
ity of the theory to more general forms within its scope.

The theory developed herein is a generalization of Tulin’s
(1957) work, described below, to model � ow about slender hulls
of triangular cross sections and varying deadrise angles. It is
less general but simpler than Vorus’s (1996) model and is dis-
tinguished by initial emphasis on correlations with data and ulti-
mate focus on effects of camber. This theory subsumes the old
“expanding-plate” concept of Wagner (1932) without resorting
to the descending wedge analogy and invoking change of added
mass. The present paper terminates with a � rm conclusion that
because this theory agrees exceptionally well with data, it is a
de� nite improvement over prior theory. It is justi� ed for use in
predicting the characteristics of more pragmatic forms with and

Nomenclature

a D half-breadth of vorticity
Ab

D half-breadth attenuation with deadrise
AR

D aspect ratio D 42b4l552

waterplane area

B4x1 y5 D Beta function
b04x5 D static half-breadth of waterline
b4x5 D dynamic half-breadth of waterplane at

planing
c4x5 D longitudinal distribution of camber
CLlin

D lift coef� cient from linear part of pressure
based upon l2

CL D total- or net-lift coef� cient
CL2b

D lift coef� cient based on square
of dynamic beam

CLbl
D lift coef� cient based on

waterplane area
CD

D drag coef� cient based upon l2

Cf D Schoenherr � at plate drag coef� cient
based on area

D D drag force (resistance to motion)
Dnv1Df D nonviscous drag; skin friction drag

DS
D drag arising from generation of spray

g D acceleration due to gravity
F D Froude number
J D Vorus’s wetting factor
k D slope factor of tapered camber function
l D projected waterline length of keel

L D lift
m D see sequel to equation (13)
s D y

b4x5

2

u D longitudinal component of induced velocity
U D forward speed or onset freestream speed
v D transverse induced velocity

vb D transverse induced velocity at waterline
w D vertical induced velocity

x1 y1z D longitudinal, transverse, vertical coordinates;
see Fig. 1

zhc 1 zh D vertical ordinate of families of hull surface

Greek
�0 D semi-apex angle of static waterplane
� D semi-apex angle of dynamic waterplane

�b
D angle of resultant velocity at waterline

‚ D constant deadrise angle; see Fig. 1
‚4x5 D variable deadrise angle

‚c
D effective ‚ in presence of tapered

camber; see equation (1)
ƒ D local vorticity strength
… D dimensionless incremental extent of

vorticity, 4a4x5 ƒb4x55=b4x5

‡ D elevation of water surface
‹ D Savitsky’s mean wetted length in

beams; 42lc C l5=4b4l5

Œ D 1
2

ƒ ‚

�
3 ‚ radians

� D 1
2

C ‚

�
; also kinematic viscosity of

water
� D mass density of water
’ D trim angle, radians; see Fig. 1
� D velocity potential function
� D de� ned by equation (18)
– D equations (12) and (13)

â4x5 D Euler gamma function
ˆ D equation (12)

without camber, which is the subject of the second part of this
study to appear in a separate paper.

Background and pertinent literature

There is a very large amount of literature on planing from
experimental studies with models and theory extending over the
past 90 years. Cited here are only those technical papers and
reports which apply to the procedures used herein and the few
studies which have been conducted on effects of camber.

As stated above, the present theory is a generalization of the
seminal work by Tulin (1957). He demonstrated that the main
features of the inviscid � ow about slender, � at surfaces at high
speed is well approximated by application of slender-body the-
ory with an ingenious modi� cation to give � nite velocities along
the waterlines. Moreover, he showed that camber reduces spray
drag by reiterating the incisive, (but long-ignored!) observation
of Wagner (1932) that the nonviscous drag of � at, slender plan-
ing forms is composed of induced drag and spray drag which are
of equal magnitude in the absence of camber. Tulin gave results
which showed that spray drag is a joint functional of the shapes
of the waterplane and longitudinal camber, curvature and slope
distribution. His parametric evaluations indicated that blunt fore-
bodies with greater camber curvature aft would provide the least
nonviscous drag. Tulin’s omission of frictional resistance did not
give a realistic picture of the relative in� uence of lateral and ver-
tical shapes on total drag. Nor did he compare with model data.
A full, convex waterplane forward is unacceptable for operation
in waves and would have considerably greater wetted surface and
hence higher frictional drag than his concave waterplanes for the
same lift.

Nevertheless, his work, though ignored by empiricists and the-
orists alike, inspired Vorus (1996) to develop a theory for vertical
impact of symmetrical, two-dimensional wedges of curved and
straight sides and to extend his procedure to inclined impact with
others in Vorus et al (1998). His main departure from prior theory
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was the inclusion of the component of induced transverse veloc-
ity normal to the hull and removal of the singular behavior at the
spray root by an elaborate extension of Tulin’s (1957) procedure.
Vorus thereby obtained an integral equation of the second kind
in lieu of one of the � rst kind which arose in Wagner’s (1932)
model. The Vorus model is complicated by accommodating vary-
ing cross-section shapes. His theory provides the essential input
for steady-state planing of slender hulls of moderate deadrise. To
date Vorus has not published applications to planing although he
has promised to do so.

The � rst experimenter to investigate the in� uences of cam-
ber appears to be John Plum, a Danish yachtsman-intuitive naval
architect who was granted a patent on his “Fantail” design. In
the late 1920’s he built a 35-ft (10.7 m) boat which involved a
stepped hull with camber forward and an adjustable stabilizer aft.
In this way he reduced the wetted surface while providing trim
control. While at the David Taylor Model Basin he in� uenced a
young graduate naval architect, Eugene Clement, who furthered
the concept by conducting model experiments with cambered sur-
faces and models of stepped hulls—a short cambered surface with
deadrise extending forward of the step and the Plum “Fantail”
stabilizer aft—while exploiting the depressed water surface aft of
the step to provide a dry afterbody. This design thus eliminates
the inef� cient wetted area of the afterbody and has been shown
to reduce total resistance remarkably. Later Clement replaced the
stabilizer by twin hydrofoils at the stern. The experiments on
cambered surfaces of zero deadrise by Moore (1967) showed
lift/drag ratios of 15 compared with about 8 for the same area and
lift. This work and the summary of Clement & Koelbel (1992)
has inspired this current effort.

In the 1930’s Sottorf, who conducted the � rst systematic series
of model tests of planing forms, did a limited experimental study
of circular-arc camber. He reported high lift/drag which degraded
at non-optimum trim and the model displayed porpoising. These
negative aspects were suf� cient to convince designers and experi-
menters alike to drop any further consideration of cambered hulls.
The introduction of trim � aps on German E-boats during WWII
and their current use today on planing boats to assist in nego-
tiating the hump resistance prior to planing is an application of
effective camber, as are � aps on aircraft wings. These are set to
zero � ap angle at planing speed to provide optimum trim angle.
To be effective, cambered hulls must provide for the center of lift
to be close to the longitudinal center of mass, requiring a stepped
hull with hydrofoils at the stern as pointed out by Clement.

A few other theorists have addressed planing forms with cam-
ber. Maruo (1951) analyzed planing at arbitrary Froude num-
bers of two-dimensional, cambered sections. Although he treated
arbitrary shapes, he gave results only for � at plates. Cumber-
bach (1958) also produced formulas for two-dimensional shapes
at high but � nite Froude numbers. His singularity at the lead-
ing edge vanished at high Froude numbers, yielding elliptical
loading as in airfoil theory. For a parabolic camber he found
nonviscous-lift/drag ratios some eight times higher than that of a
� at plate! The problem of holding viscous drag � xed by holding
arc-length-to-chord constant while optimizing camber was taken
up by Wu et al (1972). A pair of nonlinear integral equations
when approximated by uncoupled linear equations gave results
for a family of optimum shapes for a range of arc-length-to-
chord. Favorable comparison with Cumberbach (1958) was noted.
Although two-dimensional calculations are instructional, slender

planing forms are of low aspect ratios, with � ows induced in
transverse planes. Maruo (1967) has given a masterful treatment
of high- and low-aspect-ratio surfaces in the presence of gravity.
He also has identi� ed the reduction of spray drag by camber, but
again evaluated only � at surfaces. He pointed out that retention of
gravity increases lift at high Froude numbers at low aspect ratios
and decreases it at large aspect ratios, noting that these opposite
tendencies were demonstrated previously by experiments.

Development of a mathematical model

Geometry of classes of planing surfaces

An equation of the bottom surface of a class of hulls of vari-
able deadrise angle, ‚4x5, and linearly tapered camber may be
written as:

z D zhc4x1 y5 D y tan‚c4x5 ƒ c4x5 1 ƒ k
y

b4x5
3

k D a constant: 0 k 1

or for ease later as:

z D zhc4x1 y5 D y tan ‚c4x5 ƒ c4x5

where

‚c
D tanƒ1 tan ‚4x5 C k

c4x5

b4x5
(1)

A family of surfaces of varying deadrise angle without camber at
trim angle, ’ , is obtained by setting k D 0 and replacing c4x5 by
x tan ’ to give:

z D zh4x1 y5 D y tan ‚4x5 ƒ x tan ’ (2)

For simple prismatic surfaces, ‚ is a constant. Figure 1 displays
the geometry of prismatic hulls as well as the static and dynamic
half-breadths as de� ned by the intersections of the calm and dis-
torted water surface with the hull. The hull is held restrained in
heave and trim in a uniform � ow of an inviscid � uid in which the
induced motion is taken to be irrotational. All recurring symbols
are de� ned in the Nomenclature.

The components of the unit normal of the general surface (2)
are given by:

EN D 1
D

Fx1Fy1Fz 3 F D z ƒ zhc
D 03

D D
q

F 2
x

C F 2
y

C F 2
z

Fx
D ƒzhcx

D cx
ƒ y ‚cx sec2 ‚c3

Fy
D ƒzhcy

D ƒ tan ‚c3 Fz
D 1

EN D 1
D

ƒzhcx1ƒzhcy 11 3D D
q

z2
hcx

C z2
hcy

C 1

(3)

Subscripts x1 y1 z indicate partial derivatives.
For the general class of hulls

EN cx
ƒ y

¡

¡x
4tan‚c4x5 cos‚c1ƒ sin ‚c1 cos ‚c
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Fig. 1 Schematic of a prismatic hull de�ning dimensions, coordinates,
and static- and dynamic half-breadths

which for prismatic forms at small trim angles, simpli� es to:

EN 4tan ’ cos ‚1 ƒ sin ‚1 cos‚5 (4)

As planing craft must be slender to operate in even limited
seaways, slender-body theory may be used for aspect ratios in
the vicinity of unity and less. This implies that the � ow is domi-
nantly transverse except in planes very close to the bow and stern.
The three-dimensional equation of continuity can be reduced to
a two-dimensional one by noting that the longitudinal gradient
of the x-component, ux4x1 y1 z5 is weak for suf� ciently small
dynamic beam-to-length ratios thereby reducing the continuity
equation to vy4y1 z3 x5 C wz4y1 z3 x5 D 0, in which x has the role
of a parameter. This led Wagner (1932) to envision the � ow in
any transverse plane as that due to a descending wedge at vertical
speed U tan ’ . He chose to approximate this wedge � ow by the
� ow generated by an in� nitely long � at plate of expanding width
at the level of the undisturbed water surface. He then found the
dynamic beam by calculating the local intersection of the raised
water level with the wedge-side extension. The � at-plate � ow
is generated by a vorticity distribution on z D 0 from ƒb4x5 to
Cb4x5. He found that the ratio of dynamic-to-static half-breadths
was � =2, independent of the deadrise. This distinguished Wag-
ner’s theory from an earlier one of von Karman and gave much
better agreements with model data. This factor has been used by
empiricists and theorists alike in spite of the fact that the local

de� ection of the water surface must decrease with increasing
deadrise angle. The Wagner theory neglects the contribution to
the normal velocity on the hull by the strong transverse induced
velocity. This was noted for the � rst time by Vorus (1996), as
stated earlier.

An approximate velocity potential

A more accurate velocity potential than those generally
employed previously would consist of vorticity distributions on
the boundaries of the hull cross section and its mirror image
together with boundary singularities on the unknown water sur-
face. This would involve coupled integral equations with compli-
cated kernels for the unknown singularity strengths, forestalling
any analytical progress by requiring numerical inversions. Here
the distributions of vorticity are brought to the level of the calm
water, yielding the simple potential:

�4y1z3x5 D 1
�

Z a

ƒa

ƒ 4y05 tanƒ1 z

y ƒ y0 dy0 (5)

This potential and its derivatives must satisfy the following
boundary conditions:

(i) �y401 zhc5 D v401 zhc5 D 03
(ii) �y4ƒy1 z5 D ƒ�y4y1z5

(iii) EN ÿ EV D 03 EV D 4U C u1v1 w5

ƒUzhcx
ƒ �yzhcy

C �z 03 U �x (6)

(iv) U =
p

gl 13 �4y1 ‡4y3x55 D 03 — y — a
(v) �y4y1 z3 x5 D a � nite value for y D b4x53 z D ƒ0

Folding the integral in (5) and dividing the limits into a large part
from 0 to b4x5 and an assumed very small part, 4a4x5 ƒ b4x55
gives:

� D 1
�

Z b

0
ƒ 4y05K4y1y 05 dy 0 C

Z a

b

ƒ 4y05K4y1 y05 dy0 (7)

where

K D tanƒ1 z

y ƒ y0
ƒ tanƒ1 z

y C y0

and the odd-function Condition (ii) for asymmetrical � ow in y
has been enforced by using ƒ 4ƒy 05 D ƒƒ 4y 05.

This potential does not satisfy Condition (iv) on the water sur-
face z D ‡4x1 y5, nor can its derivatives satisfy Condition (iii) that
the total velocity normal to the hull must vanish. Applying the
usual thin-section approximation, these conditions are enforced
by values of the potential and all derivatives on the line z D 0.
This implies that applications will be limited to moderate dead-
rise and small trim angles. Equation (7) satis� es �4y103 x5 D 0
for — y — a and yields:

v4y1 ƒ03 x5 D Lim �y4y1 z3 x5z!ƒ0
D ƒ4y53 — y — a

v4y1 03 x5 D 03 — y —> a
(8)

These results are derived in any textbook in which the properties
of singularity distributions are applied to thin sections and � rst-
order water-wave theory, such as Newman (1977) or Breslin &
Andersen (1994).
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The vertical component along the y-axis is

w4y1 03 x5 D ƒ 2
�

ü
Z b4x5

0
v4y 05

y 0

y02 ƒ y2
dy0

C vb

Z a4x5

b4x5

y0

y 02 ƒ y2
dy0

where the asterisk indicates that the integral is taken as a Cauchy
principal-value integral.

Here, following Tulin on the assumption that b is very close
to a, the unknown transverse velocity is virtually constant in the
interval, b to a, and given by the value vb at y D b4x5. After
introducing the transformations, s D y2=b24x53 t D y02=b24x5, the
vertical induced velocity takes the following required form with
Cauchy kernels:

w4y103 x5 D ƒ 1
�

ü
Z 1

0

v4t5

t ƒ s
dt C vb

Z 4a=b52

1

dt

t ƒ s
3

0 s 1

(9)

where because a4x5=b4x5 is assumed very nearly 100, the
unknown v4t5 in the last integral is taken to be constant and
de� ned as vb, the value of the unknown transverse velocity v at
the waterline. There are now four unknowns, viz., v4s51a=b1 vb

and b4x53 v4s5 will be found as a functional of the other
three from the inversion of an integral equation; a=b to meet
Condition (v), � niteness of v4b4x553 vb by requiring the pressure
to the atmospheric at y D b; and � nally b4x5 is determined from
solving for the intersection of the de� ected water surface with the
extended hull.

Determination of the unknown functions

The transverse velocity v4y1 03 x5

Enforcement of Condition (iii) that the total normal component
at the hull yields the following constraint on v4y1 03 x5:

4zhcy5v4s5 C 1
�

ü
Z 1

0

v4t5

t ƒ s
dt

D 4ƒzhcx5U ƒ 1
�

vb

Z 4a=b52

1

1
t ƒ s

dt3

for 0 s 1

(10)

Equation (10) is a Cauchy, inhomogeneous integral equation of
the second kind for v4s5 D v4y2=b25. Fortunately, equations of
this type were inverted by Carleman (1923) as well as the equa-
tion of the � rst kind, which is better known because it arises in
airfoil theory. It is the presence of v4s5 in (10) which classi� es
the equation as that of the second kind. When this term is not
included and the last term on the right-hand side (rhs) of (10) is
omitted, equation (10) reduces to that of Wagner (1932) which
gives singular v4b5 and dynamic-to-static half-breadth ratio of
� =2. The inclusion of the contribution of the transverse compo-
nent to the normal velocity on the hull was introduced by Vorus
(1996) as well as a more elaborate procedure to yield � nite veloc-
ity at y D b4x5.

As may be gleaned (with dif� culty!) from Tricomi (1957), inte-
gral equations of the following form,

–4s5�4s5 ƒ ‹
Z 1

ƒ1

v4t5

t ƒ s
dt D f 4s5 (11)

have the following inversion:

� D –4s5f4s5

–2 C4�‹52
C ‹eˆ

41ƒs5
p

–2 C4�‹52

ü
Z 1

ƒ1

41ƒt5f 4t5eƒˆ4t5

p
–2 C4� ‹524tƒs5

dtC Ceˆ4s5

41ƒs5
p

–2 C 4�‹52
3

ˆ4s5 D 1
�

ü
Z 1

ƒ1
™4t 05

dt0

4t 0 ƒs5
3™ D tanƒ1 � ‹

–4t05
(12)

™ D tanƒ1 � ‹

–4t 05
3‹>0

D � ƒ tanƒ1 � —‹ —
–4t 05

3‹<0

where C is a constant.
The constant C is determined by satisfying one endpoint condi-

tion, leaving v normally in� nite at the other. Here that singularity
will be avoided, giving a � nite v4b5.

It is clear that for equations of the form of (11) in which the
coef� cient of � is a function of s (or y) the solution is com-
plicated. This is the reason for limiting the camber to a linear
function of y since in the case herein – is the y-derivative of the
surface and hence is a constant.

For – independent of s, equation (12) simpli� es to:

� D 1
–2 C 4�‹52

–f C ‹eˆ

1 ƒ s

Z 1

ƒ1

41 ƒ t5f 4t5eƒˆ4t5

t ƒ s
dt

C Ceˆ4s5

41 ƒ s5
p

–2 C 4�‹52
(13)

where the t-integral is a principal-value integral. Hereafter the
asterisk will be generally omitted for ease of transcription.

Comparing with (10) and using (1), the functions in (13) are
(for the most general class of hulls considered here):

– D tan ‚c4x53 ‹ D ƒ 1
�

3

f D U 4c4x5ƒ m4x5
p

s5 ƒ vb

�

Z 4a=b52

1

1
t ƒ s

dt3

m4x5 D b4x54‚c5x sec2 ‚c3

ˆ4s5 D 1
�

ü
Z 1

0

4� ƒ tanƒ14cot ‚c55

t ƒ s
dt

ˆ D 1
�

ü
Z 1

0

4� ƒ tanƒ14tan4� =2 ƒ ‚c55

t ƒ s
dt

D 1

2
ƒ ‚c

�
ln

1 ƒ s

s

eˆ4s5 D 1 ƒ s

s

1
2 ƒ ‚c

�
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With the foregoing as input (13) takes the form:

v D f tan ‚c
ƒ 1

�K14s5

Z 1

0

K14t5

t ƒ s
f 4t5dt cos2 ‚c

C C cos ‚c

s1=2C‚c=� 41 ƒ s51=2ƒ‚c =�

(14)

where

K1
D s1=2C‚c=� 41 ƒ s5Œ

Enforcing Condition (i), 4v40103 x5 D 05 determines C by multi-
plying by s and by taking the limit as s ! 0. This yields

v D f tan ‚c
ƒ U

�

s

1 ƒ s

Œ

� cx i1
ƒ m4x5i2

ƒ vb

�
i3 cos2 ‚c

where the in are

i1
D

Z 1

0

1 ƒ t

t

Œ
dt

t ƒ s

D �
1 ƒ s

s

Œ

tan ‚c
ƒ � sec‚c3

with Œ D 1
2

ƒ ‚c

�
3

i2
D

Z 1

0

41 ƒ t5

4t ƒ s5

t‚c=� dt

41 ƒ t51=2C‚c=�

D � s‚c=� 41 ƒ s5Œ tan ‚c

ƒ 2p
�

â 1 C ‚c

�
â4Œ5

i3
D

Z 4a=b52

1

1
�ƒ s

Z 1

0

1
t ƒ s

C 1
� ƒ t

(15)

� 1 ƒ t

t

Œ

dt d�

D ƒ�
1 ƒ s

s

Œ Z 4a=b52

1

d�

�ƒ s
tan ‚c

ƒ �
Z 4a=b52

1

�ƒ 1
�

Œ
d�

�ƒ s
sec‚c

where â is the Euler gamma function and only the t-integral in the
double integral is a Cauchy principal-value integral as 0 < s < 1.

Integrals of these Cauchy types with branch points and
poles within and beyond the limits are included, for example,
in Gradshteyn & Ryzhik (1985) (hereafter G&R), page 290,
#3.228-3. However because of the generality of the integrands,
their results frequently contain hypergeometric functions which
may or may not have simple equivalents not easily recognizable.
The following results are given by contour integrations for those
terms involving poles and branch points. (Worthy exercises for
interested students!)

Upon insertion of these results into (14), the term f 4s5cx4x5 is
annulled by the residues of poles, leaving:

v D s

1ƒs

Œ

�

8
>>><

>>>:

U cx4x5C vb

�

Z 4a=b52

1

�ƒ1
�

Œ
d�

�ƒs

ƒ 2
� 3=2

m4x5â 1C ‚c

�
cos‚c

9
>>>=

>>>;
cos‚c

(16)

The remaining integral is reduced by the substitution q2 D �ƒ 1
to give:

v D

8
>>><

>>>:

s

1ƒs

Œ

ƒ vb

� Œ
42˜5Œ ƒ2m4x5H4‚c4x55CUcx

C 2
�

vbs
Œ41ƒs5v

Z p
2˜

0

qƒ2‚c =�

q2 C41ƒs5
dq

9
>>>=

>>>;
cos‚c

(17)

where Œ D 1

2
ƒ ‚c

�
3v D 1

2
C ‚c

�
3˜ D 4a4x5ƒ b4x55

b4x5
3

H D 2
� 3=2

â 1 C ‚c

�
â4Œ5 cos ‚c

In the above-cited transformation of the integral, the upper
limit becomes 4a2 ƒb25=b2 D 4aƒb54aCb5=b2 û 24aƒb5=b1 for
a b, and 1 Cq2 is replaced by 1 since

p
2˜ 1, which will be

shown later.

Determination of epsilon

It is apparent in (17) that the � rst term within the braces is
singular while the last term is regular at s D 1. Consequently for
regularity required by Condition (v) the � rst term must vanish,
forcing the following requirement on

p
2˜:

p
2˜ D �1=2Œ

� D � Œ
U

vb

4cx
ƒ m4x5H cos ‚c5

(18)

The transverse velocity is now given by

v D 2
�

vbs
Œ41 ƒ s5v

Z p
2˜

0

qƒ2‚c=�

q2 C 41 ƒ s5
dq cos ‚c4x5

with v D 1

2
C ‚c

�
0

(19)

Here v is seen to vanish at the keel and appears to vanish at s D
1, which cannot be. To show that v4b1 03 x5 D vb , the substitution
q D

p
1 ƒ s tan q 0 converts (19) to:

v D 2
�

vbs
Œ

Z q1

0
dq04tanq 05ƒ2‚c=� cos ‚c

with q1
D tanƒ1

r
2˜

1 ƒ s

(20)
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Taking the limit for s D 1, the integral yields �

2
sec‚c, (G&R

p. 369, #3.622,2), whence v at y D b is vb as de� ned.
The q-integral can be converted to a form by the transforma-

tion q D
p

2˜t to give:

42˜5Œ
Z 1

0

tƒ2‚c =�

1 ƒ s C 2˜t
dt

D 42˜5Œ

2Œ41 ƒ s5 2F1 11Œ3 1 C Œ3
2˜

s ƒ 1

(21)

where 2F1 is a Hypergeometric function. (This result is given by
Mathematica (3.0); the t-integral does not appear to be given
by G&R.)

With (21), equation (19) becomes:

v D vb42˜5Œ

� Œ

s

1 ƒ s

Œ

2F1 11Œ3 1 C Œ3
2˜

s ƒ 1
cos ‚c (22)

An extremely accurate approximation to (22), suitable for use
in integrations, is given by the � rst term in the series for the
Hypergeometric function, which leaves

v û vb42˜5Œ

� Œ

s

1 ƒ s

Œ

cos ‚c (23)

The singularity at s D 1 is integrable as well as the square of
v4b4x5W This is in marked contrast to the limit of the Wagner
exterior solution, which omits the dependence on the deadrise
angle and produces in� nite nonlinear pressure at the spray root.
Integrability and the closeness to (22) (to be shown below) allows
continued analytical formulas to be developed by using (23).

Determination of v4b4x51 03 x5

The consistent form of the Bernoulli equation in slender-body
theory is

p=� D ƒUu ƒ 1
2

v2 (24)

in which p is the change in pressure from ambient.
Along the spray root, p D 0, hence

v2
b

D ƒ2U
¡

¡x

1
�

Z b4x5

o

v tanƒ1 z

y ƒ y0

ƒ tanƒ1 z

y C y0
z!ƒ0

dy0

The angle subtended by the � rst arctangent is 0 for y > y0 and
ƒ� for y < y0. The last term gives zero, leaving

v2
b

D 2Ubx4x5vb whence

vb
D 2Ubx4x53 vb

D 0
(25)

The transverse velocity is seen to vary as the slope of the dynamic
waterline, and v is now

v D 2bxU 42˜5Œ

� Œ

s

1 ƒ s

Œ

2F1 11Œ31 C Œ3
2˜

s ƒ 1
cos ‚c (26)

and

v û 2bxU 42˜5Œ

� Œ

s

1 ƒ s
cos ‚c (27)

Recalling that the dynamic half-breadth, b4x5, is still unknown,
v is not yet determined. As b4x5 is dependent upon the shape of
the hull, it is necessary to treat each hull class separately.

Classes of hulls

Class I: prismatic

Prismatic hulls are of constant deadrise angle without cam-
ber. The static half-breadth is simply obtained from the general
class by taking c4x5 D x tan ’3 ‚c

D ‚ and k D 0. The static half-
breadth is

b04x5 D x
tan ’

tan ‚
and 2˜ D � Œ

U

vb

tan’

1
Œ

(28)

Then (23) is reduced to

v

U
û s

1 ƒ s

Œ

tan ’ cos ‚3Œ D 1
2

ƒ ‚

�
(29)

The kinematical condition on the water surface is (for U u)

ƒU‡x
ƒ v‡y

C w D 03 for 1 < s < ˆ

As v D 0 for s > 1 and w is nonzero only in way of the water-
plane, upon integrating, the water surface de� ection along � xed y
to any x interdicting the waterline, assuming ‡4y305 D 0, one has

‡ D 1
U

Z x

0
w4s103 x05dx0 (30)

where w is to be found from

w4y1 03 x5 D ƒ 1
�

Z 1

0

v4t5

t ƒ s
dt ƒ vb

�
ü

Z 41C˜52

1

dt

t ƒ s
3

for s 1s 1

The last term is negligible because of the very smallness of ˜ (to
be shown after b4x5 is found). Using (29) in place of the exact
expression for v yields

w4y1 03 x5 D U( y2

y2 ƒ b24x5

Œ

ƒ 1

!

tan ’ (31)

Insertion of (30) into (29) results in:

‡4y3x5 C x tan ’ D ‡ ü 4y3x5 D y2Œ
Z x

0

dx0

y2 ƒ b24x05
Œ tan ’

where from the hull geometry ‡ ü is the height of the water surface
above the keel at any y in way of the hull, as may be seen in
Fig. 1. For y D b4x51‡ ü b4x5 D b4x5 tan ‚ and then

b4x5 tan ‚ D
Z x

0

b24x5

b24x5 ƒ b24x05

Œ

dx0 tan ’ (32)
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Fig. 2 Variation of attenuation coef�cient Ab as de�ned by equa-
tion (34) or (34a) and its square with deadrise angle

Substituting

b4x05 D b4x5
p

‹3 dx0 D dx0

db4x05
db4x05 D b4x5

b4x05

d‹

2
p

‹

and noting that at x0 D x, the integration over all dummy b4x 05
has an upper limit of b4x5, (32) is reduced to:

tan ‚ D 1
2

Z 1

0

1
bx

‹ƒ 1
2 41 ƒ ‹5ƒ 1

2 C ‚
� tan ’ (33)

Model experiments have shown waterplanes in way of the chines-
dry region to be very nearly triangular; consequently the slope of
the waterline is taken to be constant so bx 0 D bx may be passed
through the integral. Then the integral is recognized as a Beta
function, which can be converted to a product of Gamma func-
tions to give � nally

b4x5 D �

2
Abb04x5

where Ab
D 1p

�

â41=2 C ‚=�

â41 C ‚=�
3 b0

D x
tan’

tan ‚

(34)

Ab is de� ned to be an attenuation coef� cient of the half-breadths
as deadrise angle is increased. It is unity for zero deadrise, show-
ing that the constant Wagnerian factor, � =2 is correct only for
vanishing ‚.

Figure 2 shows that this attenuation coef� cient is de� nitely
signi� cant and especially its square, which arises in expressions
for lift and drag. More readily applicable forms for Ab and A2

b

are provided by their following least-squares very close � ts:

Ab
D 1 ƒ 00007957‚ C 000007714‚23

A2
b

D 1 ƒ 0001591‚C 000002176‚2
(34a)

Here ‚ is in degrees.
A comparison with Vorus’s (1996) corresponding factor, J , as

given in his Table (2a) is displayed in Table 1, showing very
close agreement. Differences are due to his use of sin ‚ rather
than tan‚ in his kinematical condition.

Justi� cations of approximations and
limitations of theory

It has been assumed that ˜ is very small. As b4x5 is now
known, this may be veri� ed. From the foregoing equation (28), it

Table 1 Comparison of attenuation factor, with Vorus’s wetting
factor for three values of deadrise angles

‚ 10 20 30

Ab 00929 00872 0083
J 00929 00874 00834
A2

b 00863 00760 00692
J 2 00863 00764 00696

may now be expressed by:

˜ D 1
2

p
� Œâ41 C ‚=� 5

2â41=2 C ‚=� 5
tan‚

1
Œ

3 Œ D 1
2

ƒ ‚

�
(35)

A graph of ˜ in Fig. 3 shows that it is extremely smaller than
1.0 over the entire range of applicable deadrise angles. This is
consonant with the assumptions in the foregoing.

The expressions for the exact and approximate formulas (26)
and (27) become with (35), for this hull class, simply

v

U
D s

1 ƒ s

Œ

2F1 11Œ3 1 C Œ3
2˜

s ƒ 1
cos ‚ tan’ (36)

v

U
û s

1 ƒ s

Œ

cos ‚ tan’3 Œ D 1

2
ƒ ‚

�
(37)

The validity for use in integrations of the approximation (37)
for the transverse velocity in lieu of the exact expression, (36), is
shown by the list of the ratio of the exact-to-approximate v=vapp0

displayed in Table 2. The approximation is excellent up to s D
0098, or y D 0099b4x5. The exact 4v cot ’5=U D 4053 at y D b4x5

and ‚ D 30 deg, whereas (37) is in� nite. Of course, for calculation
of v and pressure in the very near vicinity of the waterline (where
they are greatest), one must use equation (36).

It is very important to recognize that slender-body theory can-
not accommodate all combinations of trim and deadrise angles.
To de� ne a domain of permissible trim angles for a range of
deadrise from, say 0 to 40 deg, one may expect to require that
the aspect ratio of the dynamic waterplane be limited to a max-
imum of 1.0. This is because of the failure of low-aspect-ratio
wing theory to predict lift of delta wings much beyond an aspect
ratio of unity. With this presumption, the following is taken as a

Fig. 3 Variation of parameter ˜, with ‚ de� ned by equation (35)
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Table 2 Ratio of exact to approximate transverse velocities for
various values of 4y=b4x55

0 0.2 0.4 0.6 0.8 0.9 0.99

1000 00997 00994 00992 00985 00971 00479

bound for trims of triangular waterplanes:

’ tanƒ1 â41 C ‚=� 5

2
p

� â41=2 C ‚=� 5
(38)

The region below this bound is displayed in Fig. 4. This criterion
is seen to be too conservative relative to correlations with mea-
surements of wetted length and beam of prismatic forms in the
chines-dry mode shown below.

Correlations with model data

Waterplane semi-apex angle

The semi-apex angle of waterlines as a function of trim and
deadrise angles is given by

� D tanƒ1

p
� â41=2 C ‚=� 5 tan ’

2â41 C ‚=� 5 tan ‚
(39)

Equation (39) is graphed in Fig. 5 for three values of trim over
the range of deadrise angles for which measurements of wetted
beam and lengths were made by Pierson et al (1954). These data
points are superposed with the aspect ratio of each waterplane. It
is clear that although the correlations at ‚ D 10 deg are not as
good as the remarkable ones at 20 and 30 deg, the near agree-
ments are acceptable despite the relatively large aspect ratios. The
criterion of unit aspect ratio requires that the semi-apex angle not
exceed 14 deg! For this aspect of the � ow pattern it appears that
restriction to unit aspect ratio is too conservative.

Transverse velocity at waterline

The expression for the transverse velocity at the spray root,
y D b4x5, can now be found for this class of hulls as b4x5 has
been determined. It is

vb
D 2Ubx

D 2U tan �

Fig. 4 Limit of permissible trim angles as a function of deadrise angle
for waterplanes of unit aspect ratio given by equation (38)

Fig. 5 Comparison of semi-apex angles given by the present theory
(equation (39)) with derived values from data of Pierson et al (1954)
and the theory in Savitsky (1964) at trim angles of 2, 4, and 6 degs

over test range of deadrise angles

The angle from the centerline of the resultant � ow at the waterline
(of magnitude V D

p
U 2 C v2

b) is

�b
D tanƒ1 vb

U
D tanƒ142 tan �5 (40)

This compares with the approximate observations of model spray
patterns that the resultant � ow direction is at about twice the
semi-apex angle. This is given by (40) when the tangent and its
inverse may be replaced by their arguments. Figure 6 displays the
� ow and semi-apex angles.

Lift of prismatic hulls

Lift is usually reckoned from the gradient of added mass. This
process seems to mask physical interpretation. Here it is consid-
ered to be more informative of the roles of geometric parameters
to integrate the pressure distribution over the hull projection. The
consistent form of Bernoulli’s equation in slender-body theory is:

p D ƒ� uU C 1

2
v2

The induced longitudinal component is obtained from

u4y1 ƒ03 x5 D ¡�4y1 ƒ03 x5

¡x
D ƒ ¡

¡x

Z b4x5

y

v4y 01 03 x5 dy0

Fig. 6 Resultant �ow angle at waterline from centerline equal to
about twice the apex angle in agreement with many observations

with models at planing speeds
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The gradient of the linear part of the lift is then

Lx
D 2�U

Z b4x5

0

¡

¡x

Z b4x5

y

v4y 01 05dy0dy

Interchanging orders of operation (as may be validated), integrat-
ing by parts, using the approximate form of v with y D b4x5

p
s,

and evaluating an integral over s, yields upon integrating over x:

L D � �U 2 1

2
ƒ ‚

�
b24l54ƒzh x5—xDl (41)

It is important to note that the lift is jointly proportional to the
square of the half-breadth and the slope of the hull at the stern
and hence is independent of the shape of the waterplane!

This is well known by those familiar with slender, � at-wing
theory as stressed by Tulin (1957). Here the new effect of addi-
tional attenuation arising from deadrise is provided by the factor
(1=2 ƒ ‚=� ) in lieu of 1=2 as in the Wagner (1932) theory.

De� ning a lift coef� cient based on the square of the length
(solely because the available data were so normalized) and, as for
this class of hulls, zh x

D ƒ tan ’ upon introducing the � t to the
dynamic half-breadth:

CL lin
D L

1
2
�l2U 2

(42a)

D �

2
1
2

ƒ ‚

180
A2

b tan3 �

180
’ cot2 �

180
‚ (42b)

where A2
b

D 1 ƒ 0001591‚ C 000002176‚23‚ is in degrees, and
(42) gives the linear part of the lift coef� cient.

The total or net lift from the addition of the linear and decre-
ment from the quadratic term in the pressure is found to be:

CLT
D �

2
1
2

ƒ ‚

180
A2

b

ƒ 641=2 ƒ ‚=905â4‚=905â41=257

� â4‚=905â41=2 C ‚=905 cos2 � ‚

180

4â41 C ‚=1805 cot � ‚

180

� cot2 � ‚

180
tan3 � ’

180
(43)

A much more preferred form of lift coef� cient is that based upon
the square of the static beam because that is the principal dimen-
sion selected by the designer. It is

CL2b
D � 3

8

1

2
ƒ ‚

180
41 ƒ 0001591‚ C 00000218‚25

� tan
� ’

180
3 ‚1 ’ 4deg5 (44)

To compare with the comparable wing, the lift coef� cient is based
upon the projected dynamic waterplane area to give:

CLbl
D �

2

1

2
ƒ ‚

180
AR tan

� ’

180
(45)

where AR
D 4b4l5

l
is the dynamic aspect ratio.

Fig. 7 Correlations of natural logarithms of the normalized theoretical-
linear and experimental lift coef�cients, ln4CL cot3 ’ 5, with bounds of
data points given in Pierson et al (1954) from measurements other than

theirs. It is clear that the Wagner theory overestimates all bounds

The limit of (42b) as ‚ ! 0 is just half of the well-known
value of the aerodynamicist’s result for triangular wings. This is a
necessary condition for the foregoing development to be correct.
This is also the required limit for slender waterplanes of small
semi-apex angles rather than the rectangular � at-plate limit used
to develop empirical formulas as in Savitsky (1964).

Natural logarithms of normalized lift coef� cients de� ned as
CLlin

cot3 ’ and CL cot3 ’ from (42) and (43) are graphed in Figs. 7
and 8. In Fig. 7 the lift from the linear part of the pressure from
present theory and Wagner’s are compared with the indicated
spreads of data at 2, 4 and 6 deg trim, showing that the Wagner
formula over-estimates the upper bounds of the data. Figure 8
is restricted to the correlation of the average of measured lifts
obtained by Pierson et al (1954), which data show far less scat-
ter. Here the linear and the net-lift coef� cients from the current
theory show exceedly close agreement with the deductions from
model tests. It is clear that the nonlinear contribution is very small
and encourages exclusion of the nonlinear aspects except when
calculating pressures near the waterline.

Another “test” of the theory can be made by comparison with
the Korvin-Krukovsky-Savitsky (1949) and Savitsky-Neidinger
(1954) empirical � ts to a broad collection of data. This work
was summarized and applied by Savitsky (1964) in an available

Fig. 8 Remarkable � t of the natural logarithms of linear and nonlinear
normalized lift coef�cients, ln4CL cot3 ’ 5, to the consistent course of the
same function of the averages of the lift coef�cients derived from data

obtained by Pierson et al (1954) from their model tests
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Fig. 9 Natural logarithms of normalized-lift coef�cients ln4CL cot3 ’ 5,
from present theory and empirical formulations presented by Savitsky

(1964) vs. deadrise angle for three trim angles

form. Figure 9 displays that the use of Savitsky’s empiricism is
not superior to the present theory at the important trim angle of
4 deg when compared with the data from Pierson et al (1954).
He did not show in 1964 the degree to which the empirical for-
mulas compare to the inevitable scatter of model data.

This is not intended to denigrate the cited empirical � ts which
cover a much broader range of hull forms and parameters than
the limits inherent in slender-body theory permit. Rather, the
good correlations are considered a redemption of theory which
has been ignored by empiricists and pragmatic naval architects,
primarily because it gave poor correlations with � at-bottomed
models. But the � ows about such models having apex angles of
180 deg cannot be addressed with slender-body theory! Nor did
the Wagner theory work suf� ciently well because of the omission
of the contribution of the strong transverse � ow. Moreover, the

current theory holds the promise that it may be extended to form
the basis of a more rational, semi-empirical � t to existing data.

Drag of cambered and prismatic hulls

Drag has been considered as composed of that arising from the
total aft component of the pressure distribution plus the viscous
resistance due to shear along the bottom. This is expressed by:

L tan ’ C 1
2

�S SU 2Cf (46)

with S the wetted surface; SU a mean velocity on the hull bottom
and Cf is a skin friction coef� cient, usually from Schoenherr, as
presented by Van Manen et al (1988).

This is surely correct, foregoing any more elaborate method
for the viscous part. However for slender low-aspect-ratio water-
planes at small trims (just the conditions for many planing hulls),
Wagner (1932) observed that the � rst term above is composed of
equal parts of induced drag and spray drag. While this � nding
does not provide drag relief for prismatic hulls, it does indicate
that by application of camber and or waterline shape the spray
component can be reduced. This has been reiterated by Tulin
(1957), who demonstrated reductions, and by Maruo (1967) and
ignored thereafter.

Consider a hull with nontapered camber (k D 0), the nonviscous
drag may be expressed as

Dnv
D ƒ2

Z 1

0
dx

Z b4x5

0
dy zhcxp4y103 x5 D ƒ

Z l

o

dx zhcxLx

and upon integrating by parts, noting that the hull slope being
independent of y can be passed through the y-integral:

Dnv
D 4L4l54ƒzhc5—l

ƒ � �U 2Œ
Z l

0

¡24ƒzhc5

¡x2
b2 ¡

¡x
4ƒzhc4x55dx

(47)

Here in (47) it is clear that the nonviscous drag is dependent
upon the product of the lift and the slope of the hull at the stern
diminished by a functional of the product of the curvature of
the camber, the slope of the camber and the square of the half-
breadth. Assuming that the � rst term is the induced drag of the
comparable dihedral wing, then, following Wagner, half of it is
the induced drag of the hull and hence the spray drag is given by

Ds
D 1

2
L4l54ƒzhc5—l ƒ � �ŒU 2

Z l

0
zhcxxzhcxb24x5 dx (48)

As the induced drag cannot be reduced for any nonzero lift, (48)
shows that the reduction of drag by camber is bounded by the
� rst term, or the induced drag.

Limiting now to the class of prismatic forms for which there
are experimental data, the total drag/lift ratio is

DT

L
D tan ’ C Cf â41=2 C �5

� 3=2Œâ4�5 tan2 ’

SU 2

U 2
sec‚ tan ‚ (49)

with

Œ D 1=2 ƒ ‚=� 3� D 1=2 C ‚=�

SU
U

D 1 ƒ
p

� Œâ4�5 tan2 ’

2â41=2 C �5 tan ‚
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Fig. 10 Components of drag/lift ratio showing the contributions of
induced spray and viscous drags at 20 deg of deadrise as a function

of trim angle

Equation (49) results from the use of (34) and (41).
Figure 10 displays the various components of the drag/lift ratio

for a deadrise angle of 20 deg, showing the relative contribu-
tions of induced, spray, and skin-friction drags as a function of
trim angle at a Reynolds number of 2.9 million, at which the
Schoenherr frictional-resistance coef� cient is 0.0037 for a model
with a wetted keel length of 2.0 ft (0.61 m). For the prototype
craft at 35 ft (10.7 m), the optimum D=L would be some 13%
less, because of the decrease in frictional resistance coef� cient
with increase of Reynolds number. The signi� cance of the course
of the total drag/lift curve with trim angle is that the minimum
is at about 5.5 deg, in consonance with model test experience
for this deadrise angle. Figure 11 shows the degradation of L=D
with increase of deadrise angle from 5 to 20 deg as well as the
migration of the angle of optimum performance.

Pressure distribution and center of lift

Pressure—Hull bottom pressure is taken to be that on the
underside of the line of vorticity in 0 < y < b4x5. In terms of the
usual pressure coef� cient:

Cp4y1ƒ03 x5 D p4y1ƒ03 x5

�U 2=2

D ƒ 2
u4y1ƒ03 x5

U
ƒ v4y1 ƒ03 x5

U

2 (50)

Fig. 11 Degradation of lift/drag ratio with increasing deadrise from 5
to 20 deg and migration of the optimum trim angle

Fig. 12 Variation of pressure coef�cient Cp (de�ned in (50)) at
20 deg deadrise and 4 deg trim with dimensionless athwarthship
parameter, s. Maximum Cp is about 0.070 far below 1.0 for stagnation
pressure and it is located just inboard of the locus of the spray root, as

has been observed in model tests

The longitudinal component, u, is given by

u D ƒ ¡

¡x

Z b4x5

y

v
y02

b2
dy0

and by differentiating, using the prior change of variable, yields

u4s5D ƒbx

p
sv4s5C 1

2

Z 1

s

dttŒƒ1=241ƒt5�ƒ1cos‚ tan’ (51)

The t-integral can be written as a Beta function diminished by an
incomplete beta function for which, fortunately, an identity exists
in terms of a hypergeometric function.

The pressure coef� cient reduces to

Cp

tan2 ’
D

8
>>>>>>>>>><

>>>>>>>>>>:

�

2
Ab

sŒC1=2

41ƒs5Œ 2F1 11Œ31 C Œ3 2˜

1ƒs

C 1
2

8
<

:

â4ŒC1=25â 4�5

â 43=25
ƒ

s1=2CŒ

ŒC1=2 2F141=2 C Œ31 ƒ �3 s575 cos ‚

tan ‚

9
=

;

ƒ s1=2CŒ

ŒC1=2 2F141=2 C Œ31 ƒ �3 s575 cos ‚

tan ‚

ƒ s

1ƒs

Œ

2F1 11Œ31 C Œ3 2˜

sƒ1

2
cos2 ‚

9
>>>>>>>>>>=

>>>>>>>>>>;

(52)

where the reduced form of (26) has been used for v and 2˜ D
4Œ tan‚=Ab5

1
Œ 0

Evaluation of Cp for ‚ D 20 and ’ D 4 deg is shown in Fig. 12,
where it is clear that the peak pressure, 0.07, is extremely close
to the spray root (at 0.988b4x55 as has been observed experi-
mentally. It is also clear that this pressure is far below stagnation
pressure. The practice of referring to the loci of maximum pres-
sure as “stagnation lines” is surely misleading.

Faltinsen (F) at the Department of Marine Hydrodynamics,
Norwegian University of Science and Technology, and Zhao (Z)
at Marintek A/S Trondheim, have conducted extensive studies
of vertical impact of wedges on water, reported in several land-
mark papers. In Z&F (1993), they have applied boundary-element
methods to model wedges of arbitrary shape by use of singular-
ities on the wedge and along the level of the calm-water surface
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to account for the distortion during entry while retaining nonlin-
ear terms. They displayed close correlations of pressure distri-
butions and the spray geometry with their extensive evaluations
of an exact modeling by Dobrovol’skya (1969). Good agreement
was also achieved at small trim angles with a theory employing
Wagner’s (1932) local jet � ow analysis together with Cointe’s
(1991) matched asymptotic procedure.

Figure 13 shows a comparison at 20 deg deadrise of normal-
ized pressure coef� cients (as de� ned by equation (47)) from the
present theory, from Z&F (1993) (by curve-� tting values from
their Fig. (6e 1)) and the result from present theory, labeled
“Wagner” by setting Œ D � D 1=2. Z&F majorize the present
curve while following closely to the “Wagner” curve. Application
of their theory to planing when compared with the data of Pierson
et al (1954) will overestimate lift and waterplane geometry.

Indeed, in Zhao et al (1997), their theory compared with
Savitsky’s (1964) empirical � t showed 33% higher lift at 4 deg
trim and 20 deg deadrise and a mean wetted-length/beam ratio of
unity (aspect ratio D 1 for a triangular waterplane) and substan-
tial overestimates at all other ratios (lower aspect ratios). These
differences were ascribed to three-dimensional effects. However,
similar theory for low aspect wings has shown good comparison
with experimental lifts up to an aspect ratio of about 1.0. Because
the lift of comparable planing areas is one-half that of wings for
the small, practical trim angles used, it seems doubtful that 3-D
effects are present except very near the bow and step or stern
for beam/lengths less than 1=2. It seems suf� cient to de� ne the
waterplane half-breadths, b4x5, by the offsets of the spray root
where the pressure is virtually atmospheric. Z&F (1993) show no
drop in the ratio of dynamic to static half-breadths with increasing
deadrise angle, being always the Wagner value of � =2, while
Zhao et al (1997) have given falling values in their hull “half-
breadths” (de� ned by the points at which the tapered spray van-
ishes on the hull and where the pressure is taken to vanish). This
is outboard of the spray root and seems to have no practical rele-
vance because between the offset of the spray root and the inter-
section the pressure is virtually zero as de� ned herein. It is the
reduction of half-breadths of the spray root which is essential
to give close correlations to the waterplane geometry and lift as
determined by Pierson et al (1954) albeit for the restrictive class
of chines-dry waterplanes.

Fig. 13 Normalized-pressure coef�cients, Cp cot2 ’ , from the bound-
ary-element procedure of Zhao et al (1993); of Wagner by setting

Ab
D 1; present theory for 20 deg deadrise and 4 deg trim

Again in Zhao et al (1996) a comparison of their measured and
theoretical pressures on a ship-bow model shows that their theory
overestimates the experimental values. Their reference in Zhao
et al (1997) to the three-dimensional lattice-based calculations
of Lai (1994) which agree with the Savitsky (1964) empirical
� t to data, to bolster their belief in 3-D effects, seems question-
able as Lai used the half-breadths of the spray roots given by
Vorus (1996) which are the same as present theory. That their
several mathematical models (which indeed incorporate nearly all
the physics save gravity of the induced � ow, including separation
at chines) do not � t the data more closely is surely surprising.
The present theory, which ignores the detailed structure of the
spray, may be fortuitous by compensating omissions! It should be
compared with other data from good chines-dry model tests, the
source of which is currently unknown.

It is of interest to compare the maximum pressure coef� -
cients based on forward speed by replacing their drop speed, V ,
by U tan ’ in the criterion given by their equation (5.1), which
becomes

CpMax
D 2pMax=�U 2 D �

2
tan’

tan ‚

2

D d

dx
b4x5Wagner

2

(53)

For the present theory the maximum pressure coef� cient is taken
to be

CpMax
D �

2
Ab

tan ’

tan ‚

2

D d

dx
b4x5

2

(54)

Figure 14 compares (53) and (54) together with maxima pressure
coef� cients from scaling Z&F values and present-theory values
from equation (52) at the indicated deadrises. These indicate that
very simple formulas depending only on the square of the slope
of the waterline, given by b04x5 as taken herein, give excellent
values of maxima pressure coef� cients. This indicates that the
waterline de� ned by b4x5 is correct and that their asymptotic
theory yielding (53) applies to the present theory by using the
attenuated spray-root offset. Moreover, the values are not much
below those of Z&F!

Center of lift—As the distribution of loading is uniform over
the length of the waterplane by this theory, the center of lift is
at x D Nx D 2l=3 aft of apex of the waterplane. This value is in

Fig. 14 Maxima pressure coef�cients at 4 deg trim as functions of
deadrise angle. Circles are from Zhao & Faltinsen (1993) applied to
planing. Triangles are maxima from current theory, with upper curve

equation (53), lower equation (54)
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close agreement with Savitsky’s empirical � t to data in chines-
dry mode at the highest beam Froude number 4U=

p
2gb4l5 D 95

at which the center of lift is independent of gravity. In current
notation, his � t is

Nx D 1 ƒ 1

2

3

4
ƒ 1

422A2
R

C 2039
l

D 0063 to 00653 100 AR 200

(55)

One must expect that the loading falls to zero at the trailing
edge and at the apex, where it has long been recognized by aero-
dynamicists that the slender body fails (see Thwaites (1987)). It is
therefore remarkable that the theoretical and experimental results
for the lift-centers are as close as they are.

Conclusions

The foregoing demonstrates that development of this theory
in an independent, less complicated form con� rms, for triangu-
lar cross sections, the more general theory as derived by Vorus
(1996). Moreover, it is shown for the � rst time that it agrees
exceptionally well with all hydrodynamic characteristics deter-
mined from well-conducted model experiments within the domain
of applicability of slender-body theory. It is also apparent that the
old model of Wagner does not predict any of the needed aspects
of chines-dry planing with adequate accuracy. It is surprising
that the several different models of Zhao & Faltinsen all over-
estimate pressures and total loadings in spite of their inclusion
of much of the nonlinearities. Their corrections to account for
three-dimensional effects do not seem to be suf� cient to account
for the difference with data. Their maximum pressures and those
given by the present theory are found to be given by very simple
functions of the offsets of the spray roots. The formulas herein
show the physically appealing attenuations of the half-breadths
with increasing deadrise as de� ned by the spray-root loci without
which the close correlations shown would not be obtained albeit
with only one set of data.

Finally, this theory is considered justi� ed to apply in the com-
panion paper, to be published later, to more pragmatic forms
without and with camber within the scope of slender-body the-
ory. It is hoped that this development may be extended to higher
aspect-ratios and waterplanes with wetted chines to secure semi-
empirical � ts to existing data on a much more rational basis
subsequent to the later study, which will be limited to the chines-
dry mode.
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Flüssigkeiten, Zeitschrift fur Angewandte Mathematik und Mechanik, Inge-
nieurwissenschaftliche Forschungsarbeiten, Berlin, 12, 4, 194–215.

Wu, T. Y. and Whitney, A. K. 1972 Theory of optimum shapes in free-
surface � ows. Part 1. Optimum pro� le of sprayless planing surface. Journal
of Fluid Mechanics, 55, 3, 439–454.

Zhao, R. and Faltinsen, O. 1993 Water entry of two dimensional bod-
ies. Journal of Fluid Mechanics, 246, 593–612.

Zhao, R., Faltinsen, O., and Aarsnes, J. 1996 Water entry of arbi-
trary two-dimensional sections with and without � ow separation. Proceed-
ings, 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, U.S.
National Academy of Science Press, Washington, DC.

Zhao, R., Faltinsen, O., and Haslum, H. A. 1998 A simpli� ed non-
linear analysis of a high-speed planing craft in calm water. Proceedings,
FAST ‘97, 431–438.

72 MARCH 2001 JOURNAL OF SHIP RESEARCH


