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Calculating Aerodynamic Forces for Bermuda Sail Plans  
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Abstract. The paper describes the choice of a computational method to calculate the sail forces for a sail plan with head- and 
mainsail. An optimizer searches for the best trim. The computer code is validated and some example results are presented.  

NOMENCLATURE 

AR aspect ratio s/c 
c chord length, distance from luff to leach 
CD drag-force / (q∙c∙s) parallel to V∞ 

CL lift-force / (q∙c∙s) vertical to V∞ and span 
d gap between sail foot and deck 
D weight displacement 
GM metacentric height 
q dynamic pressure = ρ/2∙ V∞

2
 

Re Reynolds-number = V∞∙c/ν 

RM righting moment 
s sail-span foot to head, normal to flow 
V∞ apparent wind speed far ahead of sail 
Veff effective wind speed at sail section 
ui induced velocity parallel to chord 

wi induced velocity normal to chord 
x coordinate parallel to centerline aftwards 
y coordinate from gooseneck to leeward 
z from gooseneck parallel to mast upward 
α geometric angle of attack 
αi induced angle of attack 
αeff effective angle of attack 
γ sheeting angle 
φ heel angle 
φVS angle of vanishing stability 
ρ density of air = 1.225 kg/m3 (stand. atm.) 
ν kinematic viscosity of air = 1.461∙10-5 m2/s 
ω Küchemann's correction factor for AR 
Γ strength of spanwise vortices

1 INTRODUCTION 

The aim of my work is the performance improvement of sailing yachts. Part of this task is the optimization of the 
geometry of the sail plan. This includes not only the sail dimensions but also the trim parameters like sheeting 
angle, twist and draft at different heights. Since the number of possible combinations is almost infinite, one 
would prefer to do the trial and error with a computer instead of doing it on the water. The computational 
methods in use are either fast VPPs, that use simple physical models or on the opposite sophisticated CFD-
programs. A typical VPP is the one employed by the ORC [1]. It uses global, empirically determined coefficients 
to calculate the force developed by an individual sail, based on the apparent wind angle at a predetermined 
height. It is assumed that this force can be achieved by an optimal trim. The values of the trim parameters remain 
unknown. For my desired optimization, this method is neither sensitive nor detailed enough. On the other hand, 
the CFD-methods require a 3D computational mesh of varying density that needs to be modified for every small 
change of the trim parameters. This is so complex and time consuming, that an automated optimization is not 
feasible. Instead, a method is needed, that gives a detailed insight into the local flow vectors and local forces 
across the sail, including the interaction of jib and main. The method must allow an easy change of the geometric 
dimensions and trim parameters and it must be possible to incorporate this program into an available optimiza-
tion routine. I will explain the choices that were made, but I will keep the analysis short. If a detailed description 
of the applied methods is given in the referenced sources, I will not repeat it. 

2 THE COMPUTATION METHOD 

2.1 Available Methods 

The computational methods that are described by Katz & Plotkin [2] meet the above requirements. The lifting-
line method, the vortex-lattice method and the panel method are available for three-dimensional numerical 
solutions of potential flow problems. The lifting-line method divides the wing or sail in the spanwise direction 
into a large number of elements. A horseshoe vortex is placed on each element, with its bound vortex on the 
quarter chord line and with its trailing vortex lines parallel to the flow. In the vortex lattice method, a thin lifting 
surface is not only divided in the spanwise direction into panels, but also in the chordwise direction. A vortex 
ring is placed on each panel. Wake panels are attached to the trailing edge. This method forces the airflow to 
follow the contour of the wing all the way to the trailing edge. The so called panel methods add additional panels 
on both sides of a thick wing and on the fuselage. This way the potential flow around arbitrary thick lifting 
bodies can be calculated. If the flow is attached and the viscous effects are limited to the very thin boundary 
layer, it is appropriate to assume that the flow follows the surface of the body. For most airplanes this is the case. 
Sails are different. Except at the very close-hauled condition, sails exhibit at least partly flow separation, as 
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demonstrated in [3] for 2D sail sections. Figure 1 depicts the 
streamlines around a wing section with separated flow. If one 
would use the vortex lattice method it would be wrong to force 
the flow to follow the contour of the wing. Instead, one would 
have to prescribe the streamline that divides the inner separated 
flow region from the outside potential flow. Since this dividing 
streamline is unknown, the vortex lattice and the panel methods 
cannot be used. It is best to use the lifting-line method and to 
take care of the separation by using the appropriate coefficients 
for lift and drag. These coefficients can be determined in 
advance for the 2D sail sections [3]. 

 
 

2.2 The Lifting-Line Solution 

Prandtl's integrodifferential equation can be written in a form that is defining an effective angle of attack [2]: 
 

ieff              where           



V

wi
i                                                             (1) 

This equation must be solved for each panel. α is the geometric angle of attack and αi is calculated from the 
downwash wi that is induced by all other vortex lines in the flow area at a control point inside the panel. The 
velocity at this control point, induced by a vortex line, can be calculated with the use of the subroutine VORTEX 
as published in [2]. The summation of all induced velocities at the control point must include the trailing vortex 
lines of all panels of the headsail as well as of the mainsail, of the pieces of the bound vortices on each panel, 
again on the head- and mainsail and of the same system of horseshoe vortices that is created by the mirror 
images that simulates the reflection at the water plane. The component normal to the sail chord of this summa-
tion will deliver wi and the induced angle αi . Subtracting this angle from the geometric angle of attack yields the 
effective angle of attack. According to Prandtl's hypothesis, a section of the finite wing will produce the same lift 
as a section of an infinite wing with same profile and effective angle of attack. The lift and drag coefficients can 
therefore be taken from the 2D-sections [3]. This hypothesis is justified for wings of large aspect ratio, with the 
exception of their tip regions. The local vortex strength at each panel is calculated from: 
 

cCV L  2
1                                                                      (2) 

 
The vortex strength can then be used to calculate the downwash as described above. In Prandtl's original form 
the solution is limited to small angles of attack, where the lift CL is a linear function of αeff . In this case, the 
integrodifferential equation is linear and the division into panels transforms it into a system of linear equations. 
This system can be solved by simple matrix inversion [2]. Katz & Plotkin [2] place the bound vortex line at the 
quarter-chord line and the control point on the three-quarter-chord line. In this case, the distance between the two 
points is half a cord length and the bound circulation of the panel can be calculated from Biot-Savart's law: 
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αeff is inserted into eq. 1. This restriction of CL to its theoretical value is not necessary. It is better, to calculate the 
downwash at the control point without the inclusion of the bound vortex of its own panel and to calculate Γ sepa-
rately from eq. 2. In this case, it is possible to take CL from the tabulated data of 2D-sections [3] and one is free 
in the choice of the position of the lifting-line and of the control point. The impact of these positions will be 
discussed later. For sails, the original method needs a modification, because neither is the lift-curve linear nor is 
the aspect ratio large enough. 

2.3 A Modified Lifting-Line Method 

Küchemann [4] developed an extension of Prandtl's method to wings with small aspect ratio and sweep. He 
introduced a factor ω that corrects the results for the movement of the aerodynamic center. For an infinite aspect 
ratio and attached flow, the aerodynamic center is at the ¼ - chord line. It moves forward to the leading edge of 
the wing as AR → 0. His factors modify the induced downwash as well as the lift coefficient to include this 3D-
effect. 

Figure 1. separated flow behind a wing section 
Photo: DLR, 1915, CC-BY 3.0 
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Next, the right position of the control point must be chosen. The following consideration might help. There are 
two wings, or two sails, which influence each other. The rules from biplane theory [5] apply in this case. If the 
circulation on both wings is the same, it follows from Biot-Savart's law, that the induced velocity on each wing 
will also be the same just the sign is inverted. If the bound vortices were placed at the ¼ - chord line and the 
control points at the ¾ - chord line, the induced velocity on the rear wing would be significantly less than that on 
the forward wing, because the distance between vortex and control point would be much larger for the rear wing. 
This would be physically wrong. Prandtl places therefore the vortex and the control point in the same position. If 
this rule is obeyed, it is of only minor importance, if the chosen position is 20% or 40% behind the leading edge. 
The distance between the point on the headsail and the one on the mainsail is in both cases nearly equal, both 
points are just shifted a similar amount in the flow-direction. The XFOIL-calculations [3] showed that the aero-
dynamic center lies for many sail sections typically 33% behind the leading edge. We will therefore fix both the 
bound vortex and the control point at this position. The factor ω corrects the error introduced by considering this 
position as fixed for all aspect ratios. 
 
Another input from biplane theory is the recognition of the effect of streamline curvature [6]. The onflow to the 
mainsail is not an undisturbed parallel flow, instead it is a superposition of the parallel flow and the circulation 
of the headsail and therefore the streamlines are curved. The induced velocity describes a circle around the 
lifting-line of the headsail. If the mainsail were supposed to produce no lift, it would have to have a camber that 
follows the streamline. If the mainsail were a flat plate, it would already produce a lift even at zero angle of 
attack, just because of the streamline curvature. The effective camber of the mainsail is therefore larger than the 
geometric camber and the mainsail creates an additional incremental lift. The additional fictitious camber can be 
calculated from the radius of the circulation around the headsail at the control point of the mainsail. The curva-
ture of the circle must be multiplied with ui/V∞ because only the streamline curvature in the direction of the 
chord has an influence (see figure 2). The increase in lift is in the order of 5%. At the headsail, the conditions are 
inverted and the lift is reduced. 
 
Küchemann's correction factors require the input of the aspect ratio of the sails. The sails are not sealed to the 
water plane, instead there is a gap. The effective aspect ratio is therefore different from the geometric aspect 
ratio. Prandtl [5] published an equation that relates these two values to the gap d/s: 
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Experiments by Munk & Cario [7] revealed that for very small gaps as they appear between the jib foot and deck, 
viscous effects restrict the flow through the gap. In this case, equation 4 replaces equation 3. If there is no gap, 
the sail is reflected at the deck and water plane. Together with this mirror image, the effective aspect ratio has 
twice the value of the geometric aspect ratio of the sail. 
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The next modification is necessary, because the induced velocity at each panel has not only the component wi 
normal to the chord but also a component ui in the direction of the chord. ui is too large to be ignored. According 
to figure 2, the vector of the airflow at the local sail section can be described by the angle of attack αeff and by the 
effective wind speed Veff. In equation 2 Veff must replace V∞. 
 
 

 

 

Figure 2. local induced 

velocities at the sail section 

wi and ui drawn in the positive 
direction. 
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Written as a sum of vectors we get: 
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Another modification is required, because the lift-curve of sails is highly nonlinear. Figure 3 proves this. Instead 
of simply inverting a matrix, we now must solve a set of nonlinear equations numerically. A parameter must be 
chosen, that is updated with each iteration step until convergence. We need a global method that starts with an 
initial guess and converges reliably to the solution. Phillipps & Snyder [8] chose the lift coefficient and varied 
the circulation. For the nonlinear regime, they describe the convergence as being slow and the sensitivity to the 
initial estimate of the circulation as being high. They report only results for the linear part of the lift-curve. Dias 
[9] also uses the lift coefficient, but in an implicit definition. He calculates CL from the theoretical position of the 
separation point and varies this position until convergence. This choice limits the prediction to separated flows. 
Graf et al. [10] investigated a single wing of large aspect ratio without sweep and used the induced downwash 
for the iteration. For my work with the problem of two interacting sails, the induced velocities ui and wi are the 
selected parameters that are updated with each iteration step. The method of choice for the numerical task is 
Broyden's algorithm [11]. The head- and mainsail are each divided into 31 panels, applying a cosine distribution. 
124 values for the wi and ui are guessed at the initial input to the algorithm and will represent the result after 
convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 
A further problem, caused by the nonlinearity, is the occurrence of solutions with spanwise spikes or even 
oscillations of the induced velocities. Since different angles of attack can lead to the same lift coefficient, the 
converged solution is not unique. Neighboring panels can have significantly different induced velocities, angles 
and lift coefficients. This is a well-known phenomenon [12]. The oscillating velocities are a mathematically 
valid and converged solution, but they are physically impossible, because viscous effects would smooth out the 
strong gradients. An improvement can come from a restart with new initial values, which are gained from the 
oscillating solution by eliminating the spikes. Another possibility is to fit a third order polynomial to the 

Figure 3. lift-curve for sail sections 

calculated with XFOIL [3] 

Figure 4. downwash at headsail, 

impact of smoothing 

windspeed 5 m/s, true wind angle 75° 
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oscillating velocities and use these smoothed values for the new start. Both methods will be used to get a result 
as realistic as possible. Figure 4 shows the process. The first converged solution for the downwash at the 
headsail exhibits several spikes; one is severe. Smoothing this result eliminates these spikes and creates a new 
set of initial values. With these new initial values, the algorithm is started again and the new converged result has 
no severe spikes. The downwash at the sail head is negative (upwash), because it is under the influence of the 
strong bound vortex of the mainsail. 

2.4 Vortex Lift 

Locke et al. [13] measured in the wind tunnel strong vortex cores at the foot of the sails. These vortices create a 
lift force on the suction side of the sail. Lamar [14] applied the leading-edge-suction analogy to the flow around 
the side edges of a wing. His equations are also applicable to sails. The vortex lift will increase the lift force for 
typical sails by approximately 4%. 

2.5 The Equilibrium of Moments 

A phenomenon that is not covered by the classical lifting-line method is the effect of heel on the flow. All 
velocities are divided into their components and only the component in the direction of the onflow and the 
component normal to the onflow and the mast, respectively the forestay, are taken. The component in the 
direction of the span has no effect and is ignored. It is necessary to prescribe the heeling angle to calculate these 
components. Having a converged solution one can calculate the sail forces and the heeling moment. This heeling 
moment has to be compared to the righting moment of the hull at the prescribed heeling angle. If there is a 
difference, the whole computation must be repeated with an updated guess for the heeling angle. Brent's method 
[15] is used for this one-dimensional search. The righting moment of the hull is approximated by: 
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φVS is the angle of vanishing stability. It can be calculated from the formulae in [16]. GM is the distance from the 
center of gravity to the metacenter. This righting moment will increase, if there are crewmembers on the rail. 

3 THE INDEPENDENT VARIABLES 

A large number of independent variables is necessary to fully describe the geometry of the sails and the aero-
dynamic influence of the hull. Whether a sail is reefed or not is contained in the specified dimension of the sail. 
It is desirable to use for the trim of the sails not more parameters than necessary. This will reduce the workload 
for the optimization. For the mainsail the sheeting can be defined by prescribing the sheeting angle γ at the boom 
and in addition the twist = γ (head) − γ (boom). The camber of the sail is determined from αeff. For each angle, 
there is an optimal camber that delivers the best lift/drag-ratio [3]. It is assumed, that this camber can be realized, 
if necessary with a fully-battened main. For the headsail, there is a dependence between camber, sheeting point 
on deck and angle γ of the chord at the height of the clew [3]. The sheeting point on deck is assumed to lie on the 
extension of a straight line from the midpoint of the luff to the clew. If the distance of this sheeting point from 
the centerline of the ship is given and the camber at the clew is prescribed, then the sheeting angle at the clew is 
fixed. This dependence does not hold, if a whisker pole is used. In this case, it is necessary to prescribe sheeting 
angle and camber. The camber at the clew defines the maximum draft. The draft as a function of the height 
above deck is calculated from two quadratic equations that reduce the draft to zero at head and tack and join at 
the clew. The local camber can then be calculated from camber = draft/chord. The last parameter that is 
necessary to describe the headsail is its twist. 
 
Additional parameters describe the hull. The sails create an induced pressure on the hull [17]. This induced force 
and the drag forces on the hull and on the standing rigging must be taken into account. 
 
Another independent variable is the apparent wind vector. The wind speed at 10 meters height and the boat speed 
are required as input. The profile of the true wind speed as a function of the height above the water must be 
determined. Bethwaite [18] observed as a sailor the difference between light air that prevails at wind speeds up 
to 5 knots and a breeze above 5 knots. In light air, the atmospheric boundary layer is laminar and the wind speed 
increases linearly with the height. In a breeze, the boundary layer is turbulent and the wind speed follows a 
logarithmic profile. Högström et al. [19] confirmed this observation with measurements in the Baltic Sea and 
around Hawaii. They found that the linear region reaches up to 8 meters. Above that limit, the wind speed 
remains constant in light air. The logarithmic profile at higher wind speeds is characterized by the roughness 
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length z0. At wind speeds up to 50 knots the drag coefficient, which is a direct function of z0, can be approxi-
mated by a linear dependence on the wind speed [20]. It is therefore sufficient to specify only the wind speed, 
the profile follows from that. 

4 OPTIMIZATION 

There are four trim parameters that can be optimized: for the mainsail these are sheeting angle of the boom and 
twist and for the headsail camber and twist. Since the converged solutions of the nonlinear set of equations are 
not unique and sometimes they even fail to converge, the solution surface has "holes" and is "rough". For such 
noisy functions, it is not possible to calculate derivatives. The optimization without derivatives is an active 
research area [21]. The software IFFCO (Implicit Filtering For Constrained Optimization) [22] is used for this 
task. The algorithm will minimize a figure of merit. In a first step this is the component of the sail force in the x-
direction. Without additional constraints, the optimizer will select trim parameters that create an unrealistically 
large side force. It is therefore necessary to calculate the induced resistance at the keel that is caused by this side 
force and subtract this drag from the sail force. This will give a driving force that can be optimized. The induced 
resistance is calculated in this work with the Delft-method [23]. As already described, the solution for the 
induced velocities will not always be without spikes and sometimes it will be wavy. Such solutions should be 
avoided. Therefore, a penalty is defined that incorporates the number of spikes and the standard deviation from 
fourth order polynomials, fitted to the curve of induced velocities. This penalty is used to reduce the driving 
force which produces an effective figure of merit. 
 
Kelley [21] writes about implicit filtering: "No algorithm…is guaranteed to find even a local minimum, much 
less a global one." and "One approach to improve the robustness of these algorithms is to restart the iteration..". 
The result of the iteration depends on the initial values for the trim parameters at the start. Often the result is 
close to the initial values and not necessarily a global optimum. It is therefore recommended to restart the 
iteration with a different set of initial values. The results should be compared and checked for plausibility. 

5 RESULTS 

The algorithms and iterations were coded in Fortran, compiled with the latest Intel® Fortran Compiler Classic 
and run on a Windows operating system for Intel® 64 architecture. If the trim parameters are fixed, the program 
runs only seconds. The further optimization of the trim parameters can take an hour. 

5.1 Validation 

A simple test for Küchemann's extension to airfoils of low aspect ration is the comparison of the predictions with 
measurements of rectangular flat plates. Mueller [24] published results that are especially suited for this purpose, 
because he measured the wings and the 2D-version of the wing in the same wind tunnel. It is therefore possible 
to use the measured section-characteristics as input to the lifting-line prediction, which will then only model the 
3D-effects. The results are shown in figure 5. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. lift and drag coefficients for rectangular flat plates of AR 2-6 

symbols represent experiments, solid lines are predictions 
Reynolds-number = 1.4‧105 
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It is not clear why the measured CL-values for AR= 6 are higher than the 2D-values at the larger angles. This 
should not be the case. One can only speculate that there is a hysteresis at such low Reynolds-number. As 
explained in [3] XFOIL predicts a different lift value when the angle is increased compared to the case, when the 
angle is decreased, coming from a larger value. Such a hysteresis can also happen in the wind tunnel. Apart from 
this phenomenon, the predictions are good for the angle of attack range without severe flow separation. With 
Küchemann's modification and Lamar's vortex lift, the lifting-line method is not restricted any more to large 
aspect ratios. The nonlinearity of the 2D-characteristic was handled without problems. For the fully separated 
flow at large angles of attack, one cannot expect that Prandtl's hypothesis of the validity of 2D-section charac-
teristics still holds. Katz & Plotkin [2] show pictures with surface-oil flow patterns for rectangular wings of 
aspect ratios from AR = 3 to AR = 12 and α = 18.4°. Several stall-cells develop in the span-wise direction and the 
width of these cells is almost independent of the aspect ratio. The real flow over the wing sections varies 
periodically along the span. Mueller used in the test of the 2D-section a plate with a geometric aspect ratio of 1.5 
between end walls. The stall cell pattern in the 2D-case was most likely different from the one for the wing with 
AR = 6. This might explain, that the use of this 2D section data produced better agreement at AR = 2 than at AR = 
6. For such complex flows around fully stalled wings, the lifting-line method can only deliver an estimate. 
 
Useful experimental results for the validation of the program with yacht-models in a wind tunnel require the 
complete information about the geometric dimensions, the sail trim and the wind profile in the tunnel. Such 
publications are rare. Marchaj [25] measured a Finn-type rig, scaled 1:2.5, where the mast was directly fixed to 
the wind tunnel floor. For an apparent wind angle of 25°, he listed all the required trim parameters. The lifting-
line method yielded the following results: 
 

"run VII" measured predicted error 

Lift force 103.1 N 109.6 N 6.4% 

Drag force 31.5 N 29.2 N -7.3% 

 
Marchaj's sail profile resembled a circular arc, whereas the prediction uses a naca-meanline because of its better 
lift to drag ratio. In addition the sail in the wind tunnel was made of sail cloth with wrinkles. These two effects 
might explain the lower lift and higher drag in the experiment. The average Reynolds-number was sufficiently 
large at 5.6‧105. 
 
Fossati et al. [26] published results of a model of a 48' IMS yacht at apparent wind angles of 22° and 27° in 
upright condition. A typical result is listed in the following table: 
 

22° - test no. 12 measured predicted error 

CL 1.40 1.337 -4.5% 

CD 0.15 0.180 18.5% 

 
The predicted lift coefficient is acceptable, but the drag coefficient is too large. Fossati subtracted the measured 
drag of the bare hull and rig from the measured total forces with sails. The value of the subtracted forces was not 
published and can only be guessed. In addition, the average Reynolds-number was rather low at 1.3‧105. It is 
possible that the boundary-layer was laminar and not turbulent in some areas. This could also reduce the 
measured drag. 
 
The experiments by Masuyama et al. [27, 28] come with a complete set of the required parameters. The authors 
measured sail forces on a full size yacht dynamometer and compared the measured values with calculated pre-
dictions, using a vortex lattice method and a RANS-based CFD method. The sail shapes were determined with 
several distributed cameras. Apparent wind angle and wind speed were measured with an anemometer 4.8 meters 
directly above the bow. This presents a problem, because the position is less than a chord length in front of the 
jib and the flow is not undisturbed. The circulation around the headsail influences the streamlines and the 
measured apparent wind angle is about 5° larger than the apparent wind angle very far in front of the boat. It is 
possible to get a first indication of the induced velocities at the position of the anemometer with the lifting-line 
method. For the measurement no. 9609233A [27] a true wind angle of 43.4° results in the measured wind angle 
of 30.9° at the anemometer. With this complete set of input parameters, it was possible to run the lifting-line 
program. The results are depicted in figure 6. The measured sail forces on port tack differed from the ones on 
starboard tack. The forces also varied over time between a maximum and minimum value. The diagram shows 
therefore a band around the mean values for the forces –Fx and Fy. All predictions are too low. The RANS- and 
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VLM-values were not corrected for the position of the anemometer [28]. The correction would even lower these 
CFD results and make them worse. Masuyama published several datasets with different sail trims. Some would 
give a better agreement between measurement und predictions. Picking just the favorable results would be no 
honest validation. 

 
 
 
 
 
 
 
Figure 6. calculated 

components of the sail 

force compared with 

measurements 

 
 
 
 
 
 
 
 
 

 
In summarizing the validation, one can say, that the lifting-line method is a suitable tool to predict the sail forces. 
The accuracy of the results is as good as those of the CFD methods, but they come at significantly lower compu-
tational costs. 

5.2 Examples 

Some authors [17] used the Dehler 33 as an example, because the necessary information about the design is 
available and complete. The following diagrams show results at the ends of the range of possible courses, first at 
a true wind angle of 40° and then at 135°. The sheeting angle γ is measured between the sail chord and the 
centerplane. Twist is the difference γtop - γfoot.  
 
independent variables: optimum found: 
true wind angle 40° heel angel 26.8° 
true wind speed 10 kts sheeting angle mainsail foot 0° 
boat speed 6.1 kts twist mainsail 14.9° 
leeway angle 6.8° camber headsail at clew 8.8% 
jib sheeting angle on deck 10° twist headsail 20.4° 
sail profile NACA-mean line driving force 392.8 N 
 

 
At first, it is necessary to check 
the distribution of the induced 
velocities for spikes or 
oscillations. Here we see smooth 
curves. The kink of wi for the 
mainsail at the top is caused by 
unreliable 2D-section data. For 
the first two points xfoil-data is 
extra-polated beyond d/c = 0.5. 
The error is irrelevant, because 
the sail chord is so small, that 
the contribution to the total sail 
force is negligible. 
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The following diagrams depict the distribution of the optimized variables along the vertical z-coordinate: 

 

Figure 7. Dehler 33 at TWA = 40°, AWA = 21.5° 

 
It is interesting to note, that the optimizer creates a smooth distribution of the total circulation. The circulation of 
the mainsail exhibits a sharp kink at the hounds, where the circulation of the headsail starts from zero. The sum 
of both is smooth. The maximum allowed camber for both sails was limited at 18%. 
 
independent variables: optimum found: 
true wind angle 135° heel angel 4.5° 
true wind speed 10 kts sheeting angle mainsail foot 45.5° 
boat speed 7.1 kts twist mainsail 43.9° 
leeway angle 1.0° camber headsail at clew 36% 
jib sheeting point foot-rail twist headsail 40.4° 
sail profile parabola driving force 715 N 

 
 
In the second example, the in-
duced velocities of the headsail 
show a peak at panel 24, that 
contains the clew of the jib. There 
is a sudden change in the sweep-
angle at this point, which causes 
the peak. The high positive values 
of ui at the headsail are induced 
by the bound vortex of the main-
sail.  
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Figure 8. Dehler 33 at TWA = 135°, AWA = 84.7° 

 
In this example, the profile of the headsail follows a parabola and the sheet ran to the foot rail. The maximum 
camber for the parabolic headsail is 36%. The changeover point from the NACA-profile to the parabola occurs at 
an apparent wind angle of about 40°. The parabolic sail, sheeted to the foot rail, creates a higher driving force 
above this value. Without a whisker pole, it is not possible at such large AWA to increase sufficiently the 
sheeting angle of the headsail. The flow over the sail is therefore fully separated. The effective angle of attack is 
larger than 30°. The algorithm finds a converged solution even for this highly non-linear case. The mainsail 
generates ⅔ of the circulation. In the first example, sailing close-hauled upwind, the relationship was reversed.  
 
A weak point of the current algorithm is the optimizer. The program finds a good solution, but not necessarily 
the optimum. The result depends very much on the initial starting values for the trim parameters. It is therefore 
necessary to run several copies of the program in parallel with different starting values. On today's multi-core 
machines this is not a problem. 

6 CONCLUSION 

The lifting-line method is a computational tool that offers fast results for arbitrary sail geometries. The detailed 
distributions of the flow-parameters allow an insight into the flow conditions at the sails. The calculated sail 
forces are comparable to the results gained with more expensive methods (CFD). It is possible to identify 
optimal trim settings, even if the absolute accuracy of the calculated force might not be high. Finding the global 
optimum for noisy functions is still a research area. It is possible, that more effective algorithms become 
available in the future. It seems that some commercial codes perform already better than IFFCO [29]. 
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