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1. INTRODUCTION

In previous work, see e.g. (van der Schaft and
Maschke, 1995), (Dalsmo and van der Schaft,
1999), (van der Schaft, 2000), it has been shown
how port-based network modeling of lumped-
parameter physical systems naturally leads to a
generalized Hamiltonian formulation of the dy-
namics. In fact, the Hamiltonian is given by the
total energy of the energy-storing elements in the
system, while the geometric structure, defining
together with this Hamiltonian the dynamics of
the system, is given by the power-conserving inter-
connection structure of the system (corresponding
to what in bond-graph terminology is called the
”generalized junction structure”), and is called
a Dirac structure. Furthermore, there energy-
dissipating elements may be added by terminating
some of the system ports. The resulting class of
open dynamical systems has been called ”port-
Hamiltonian systems” (van der Schaft, 2000).

1 The work was supported by the EU-project GeoPlex EU-

IST-2002-34166

The identification of the Hamiltonian structure
of the dynamical model is important for various
reasons. From a simulation point of view it imme-
diately yields information about the energy and
other conserved quantities in the system, which
preferably should be respected in simulation rou-
tines. Furthermore, it is instrumental in finding
the most convenient representation of the equa-
tions of motion of the system; in the format of
purely differential equations or of mixed sets of
differential and algebraic equations (DAEs), see
e.g (Golo, 2002). From an analysis point of view
it allows to use the powerful methods regarding
stability from the theory of dynamical Hamilto-
nian systems. Finally, the Hamiltonian structure
may fruitfully be used in the control design, e.g.
by the explicit use of the energy function and
conserved quantities (perhaps after feedback) for
the construction of a Lyapunov function. We refer
to (Ortega et al., 2001), (van der Schaft, 2000) for
various work in this direction.

Recently, the framework of port-Hamiltonian sys-
tems has been extended to classes of distributed-
parameter systems (van der Schaft and Maschke,
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2002), like Maxwell’s equations over a bounded
domain with energy radiation through its bound-
ary, the n−dimensional wave equation, and com-
pressible ideal fluids. Hereto a special type of
infinite-dimensional Dirac structure has been in-
troduced, based on Stokes theorem. Physically,
this Stokes-Dirac structure captures the basic
balance laws of the system, like Faradays and
Ampères law, or mass balance and can be seen as
a geometric continuous distributed form of Tel-
legen’s theorem. The port-Hamiltonian formula-
tion is a non-trivial extension of the Hamiltonian
formulation of PDEs by means of Poisson struc-
tures, as has been explored before in the literature
(Olver, 1993). Indeed, in this case it is crucially
assumed that the boundary conditions are such
that the energy-flow through the boundary of the
spatial domain is zero. In order to allow a non-zero
boundary energy-flow the use of Dirac structures
instead of Poisson structures seems to be indis-
pensable. As a result complex physical systems
consisting of components which are either lumped-

parameter or distributed-parameter systems, and
which moreover may belong to different physical
domains (mechanical, electrical, hydraulic, ..), can
be modeled in a unified and intrinsic way. As
before, this opens up several possibilities for the
analysis and control of such complex systems,
making use of the Hamiltonian structure in an
explicit way.

The goal of this paper is to develop a dynamical
model of planar beams which encompasses large
deformations. For a nice geometric description
of the statics of a beam using screw theory the
reader can consult (Selig and Ding, 2001). A finite
element of the beam is considered as a rigid body
connected to other elements via flexible joints.
The corresponding continuous model represents
a Port-Hamiltonian system with modulated in-
terconnection structure (Dirac structure is non-
linear). If the non-linear terms are neglected then
the simplified model can be split into two parts.
The first part describes longitudinal motion of the
beam (rod model) and the second part represents
transversal motion of beam (Timoshenko beam
model).

2. BEAM MODEL

Consider a beam shown in Figure 1. The spatial
variable s ∈ [0, S] defines a position along the
unstressed beam with length S. A position of a
point of the beam is defined by (x(s), y(s)) and
the angle θ(s) stands for the the rotation of the
neutral axis with respect to a horizontal reference.
The beam is uniformly partitioned as shown in
Figure 2. Every element represents a rigid body
connected to other two adjoining elements via

θ(s)

x(s)

y(s)

Fig. 1. Stressed beam.

flexible joints (see Figure 2). The length of an
element is denoted by a.
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Fig. 2. Partitioned beam.

A finite element of the beam is shown in Figure
3. The velocity of the center of mass is denoted
by v, and ω stands for the angular velocity of the
element. The sum of the longitudinal and shear
forces is denoted by F , and M stands for the
bending moment. The inertial frame is denoted
by ΨN and the body frame of the considered part
is denoted by Ψ(s). Frames attached to the joints
are denoted by ΨJ(s) and ΨJ(s + a) (see figure
3).
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−M(s)
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F (s + a)ΨN

Ψ(s)

ΨJ(s)

ΨJ(s + a)

Fig. 3. Finite element of the beam.



2.1 Interconnection structures

In this subsection we derive equations describing
the interconnection structure of the beam. Let
tb(s) stands for the twist representing the motion
of the body frame Ψ(s) with respect to the inertial
frame ΨN and expressed in the body frame Ψ(s).
The components of tb(s) are

tb(s) =





ω(s)
vx(s)
vy(s)



 .

Here, vx is the longitudinal velocity and vy is the
transversal velocity. The motion between the body
and the inertial frame expressed in the inertial
frame is denoted by tn(s). The twists tb(s), tn(s)
are related as (see (Stramigioli, 2001) for details)

tn(s) = Adn
b (s)tb(s),

where

Adn
b (s) =





1 0 0
y(s) cos(θ(s)) − sin(θ(s))
−x(s) sin(θ(s)) cos(θ(s))



 .

Consequently,

tn(s − a) = Adn
b (s − a)tb(s − a),

Furthermore, the relative motion between two
connected rigid bodies expressed in the inertial
frame is

tn(s) − tn(s − a).

This motion expressed in the frame ΨJ(s) is
denoted by tδ(s) and given by

tδ(s) = AdJ
b Adb

n(s)(tn(s) − tn(s − a)),

where
Adb

n(s) = (Adn
b (s)−1,

and

AdJ
b =






1 0 0
0 1 0
1

2
a 0 1




 .

Therefore, the relative motion tδ(s) has the fol-
lowing form

tδ(s)=AdJ
b Adb

n(s)(Adn
b (s)tb(s)−Adn

b (s−a)tb(s−a)).

If a tends to zero then the previous expression
becomes (AdJ

b → I3)

tδ = Adb
nd(Adn

b tb). (1)

Here the operator d represents the exterior deriva-
tive. Let wδ(s) represents the wrench generated by
elastic forces and expressed in the frame ΨJ(s).
The components of the wrench wδ(s) are

wδ(s) =





M(s)
Fx(s)
Fy(s)



 .

Here, Fx stands for the longitudinal forces, Fy for
the shear forces and M for the bending torque.
Let wn(s) stands for the wrench generated by

elastic forces and expressed in the frame ΨN .
The wrench wn(s) is related to wδ(s) as (see
(Stramigioli, 2001) for details)

wn(s) = (Adb
n(s))T(AdJ

b )Twδ(s).

Consequently,

wn(s + a) = (Adb
n(s + a))T(AdJ

b )Twδ(s + a).

Therefore, the total wrench applied to the rigid
body is then

wn(s + a) − wn(s).

This wrench expressed in the reference frame Ψ(s)
is denoted by wb(s) and has the following form

wb(s) = (Adn
b (s))T(wn(s + a) − wn(s)) =

(Adn
b (s))T(Adb

n(s + a))T(AdJ
b )Twδ(s + a)

−(Adn
b (s))T(Adb

n(s))T(AdJ
b )Twδ(s).

If a tends to zero then the previous expression
becomes

wb = (Adn
b )Td((Adb

n)Twδ). (2)

The boundary variables are denoted by t0b , w0

b ,
tSb , wS

b . The left boundary variables are the twist
t0b and wrench w0

b expressed in the frame Ψ(0).
Similarly, the right boundary variables are the
twist tSb and the wrench wS

b expressed in the frame
Ψ(S). The relations between the spatial variables
tb(s), tw(s) and the boundary variables are

tb(0) = t0b , wb(0) = w0

b

tb(S) = tSb , wb(S) = wS
b . (3)

In the sequel we prove that the space of admissible
twists and wrenches described by Equations (1),
(2), (3) is a Dirac structure. Let the space of flows
be defined as

F = Ω3

1
[0, S] × Ω3

0
[0, S] × R

3 × R
3.

Here Ω0[0, S] stands for the space of zero-forms
and Ω1[0, S] for the space of one-forms. An ele-
ment of the space F is denoted by f and repre-
sented by

f =







tδ
tb
t0b
tSb







.

Clearly, tδ is the vector whose components are
one-forms and tb is the vector whose components
are zero-forms. Let the space of efforts be defined
as

E = Ω3

0
[0, S]× Ω3

1
[0, S]× R

3 × R
3.

An element of the space E is denoted by e and
represented by

e =







wδ

wb

w0

b

wS
b







.

The power product 〈·|·〉 : F × F → R is defined
by



〈f |e〉 :=

S∫

0

(wδ(s))
Ttδ(s) +

S∫

0

(wb(s))
Ttb(s) +

(w0

b )Tt0b − (wS
b )TtSb .

The space of admissible flows and effort imposed
by Equations (1), (2), (3) is denoted by D and
given by

D = {(f, e) ∈ F × E : tδ = Ptb, wb = P ∗wδ

tb(0) = t0b , wb(0) = w0

b ,

tb(S) = tSb , wb(S) = wS
b }.

Here the linear transformations P : Ω3
0
[0, S] →

Ω3
1[0, S], P ∗ : Ω3

0[0, S] → Ω3
1[0, S] are given by

P = Adb
ndAdn

b ,

P ∗ = (Adn
b )Td(Adb

n)T.

Theorem 1. The subspace D ⊂ F × E is a Dirac
structure with respect to the bilinear form

� (f1, e1), (f2, e2) �= 〈e1|f2〉 + 〈e2|f1〉.

PROOF. The following coordinate transforma-
tion is introduced






t̄δ
t̄b
t̄0b
t̄Sb







︸ ︷︷ ︸

f̄

=







Adn
b 0 0 0

0 Adn
b 0 0

0 0 Adn
b (0) 0

0 0 0 Adn
b (S)













tδ
tb
t0b
tSb







.







w̄δ

w̄b

w̄0

b

w̄S
b







︸ ︷︷ ︸

ē

=







Adn
b 0 0 0

0 Adn
b 0 0

0 0 Adn
b (0) 0

0 0 0 Adn
b (S)







−T 





wδ

wb

w0

b

wS
b







.

It is clear that the coordinate transformation is
power-conserving, that is

〈ē|f̄〉 = 〈e|f〉.

Replacing f, e with f̄ , ē, Equations (1), (2) and
(3) become

t̄δ = dt̄b,

w̄b = dw̄δ,

t̄b(0) = t̄0b ,

w̄b(0) = w̄0

b ,

t̄b(S) = t̄Sb ,

w̄b(S) = w̄S
b .

Let the subspace D̄ be defined by

D̄ = {(f̄ , ē) ∈ F × E : t̄δ = dt̄b, w̄b = dw̄δ,

t̄b(0) = t̄0b , w̄b(0) = w̄0

b ,

t̄b(S) = t̄Sb , w̄b(S) = w̄S
b }.

The subspace D̄ is a Cartesian product of three
Stokes-Dirac structures (see (van der Schaft and
Maschke, 2002) for the definition of Stokes-Dirac
structure) and thus it is a Dirac structure by
virtue of example 5.1.5 in (Golo, 2002). Since
the coordinate transformation is power-conserving
then also the subspace D is a Dirac structure by
virtue of Proposition 5.1.8 in (Golo, 2002). 2

Since D represents a Dirac structure then Equa-
tions (1), (2) and (3) describe the interconnection
structure of the beam model.

2.2 Energy-storage part

The energy variables associated with the beam are
the infitesimal deformation q ∈ Ω3

1
[0, S] and the

infitesimal momenta p ∈ Ω3
1[0, S]. The infitesimal

deformation is represented by

q =





qθ

qx

qy



 ,

and the infitesimal momenta is represented by

p =





pθ

px

py



 .

The infitesimal elastic energy denoted by Hq(q) is
given by

Hq(q) =
1

2
∗ qTC−1q,

where ∗ is the Hodge operator defined with respect
to the Euclidean metric along the line and C ∈
R

3×3 is the matrix of compliance represented by

C =





cθ 0 0
0 cx 0
0 0 cy



 .

which is in general also a function of s. The
infitesimal kinetic energy denoted by Hp(p) is
given by

Hp(p) =
1

2
∗ pTM−1p,

where M ∈ R
3×3 is the mass matrix given by

M =





ι 0 0
0 µ 0
0 0 µ



 .

Here ι is the momentum of inertia per unit length
and µ is the mass per unit-length. The total
energy of the beam is then

H =

S∫

0

(
1

2
∗ pTM−1p +

1

2
∗ qTC−1q). (4)



2.3 Dynamical model

The co-energy variables are the twist tb and the
wrench wδ. These variables are related to the
energy variables as

wδ = ∗C−1q,

tb = ∗M−1p.

The variables tδ, wb represent the rates of energy
variables, that is

dq

dt
= tδ,

dp

dt
= wb + p ∧ tb.

The linear transformation p ∧Ω3
0
→ Ω3

1
is defined

as

p∧ =





0 −py px

py 0 0
−px 0 0



 .

The term p∧ tb is the consequence of the descrip-
tion of the relative motion in ”body” frame. In-
serting the previous two relations into Equations
(1), (2) and (3) gives the dynamical model of the
beam, i.e.





dq

dt
dp

dt




=

[
0 Adb

ndAdn
b

(Adn
b )Td(Adb

n)T p∧

][
∗C−1q

∗M−1p

]

,

C−1q|s=0 = w0

b ,

C−1q|s=S = wS
b ,

M−1p|s=0 = t0b ,

M−1p|s=S = tSb .

(5)

The obtained dynamical model represents port-
Hamiltonian system whose interconnection struc-
ture is described by Equations (1), (2) and (3) and
with the Hamiltonian given by Equation (4).

3. RELATIONS WITH OTHER BEAM
MODELS

In this section we compare the obtained model
with the existing liner beam models. First rela-
tions for the infitesimal change of x and y along
the beam are determined. Based on Figure 4 the
following relation is obtained

x(s + a) − x(s) =
a

2
(cos(θ(s)) + cos(θ(s + a)))+

cos(θ(s + a))qx(s) − sin(θ(s + a)qy(s).

If a tends to zero then the previous relation
becomes

dx = ∗ cos(θ) + cos(θ)qx − sin(θ)qy .

θ(s)

θ(s + a)

x(s) x(s + a)

y(s)

y(s + a)

qx(s)

qy(s)

Fig. 4. Two finite elements.

The Hodge operator appears since all terms on
both sides have to be one-forms. Similarly, the
infitesimal change of y has the following form

dy = ∗ sin(θ) + sin(θ)qx + cos(θ)qy .

Inserting the expressions for Adn
b and Adb

n into
the term Adb

ndAdn
b and taking into account the

previous two relations yields

Adb
ndAdn

b =





d 0 0
qy d −qθ

− ∗ −qx qθ d



 ,

since qθ = dθ. Similarly (Adn
b )Td(Adb

n)T becomes

(Adn
b )Td(Adb

n)T =





d −qy ∗ + qx

0 d −qθ

0 qθ d



 .

The term P = Adb
ndAdn

b can be split as

P =





d 0 0
0 d 0
−∗ 0 d





︸ ︷︷ ︸

Pcon

+





0 0 0
qy 0 −qθ

−qx qθ 0





︸ ︷︷ ︸

Pmod

.

The first part represents the constant part of P

and the second part represents the modulated part
of P . Similarly the term P ∗ = (Adn

b )Td(Adb
n)T

can be split as

P ∗ =





d 0 ∗
0 d 0
0 0 d





︸ ︷︷ ︸

P∗

con

+





0 −qy qx

0 0 −qθ

0 qθ 0





︸ ︷︷ ︸

P∗

mod

.

3.1 Wave equation and Timoshenko beam model

If we are interested in dynamics of the beam with
small deviations around the equilibrium corre-
sponding to the unstressed conditions then the
modulated terms Pmode, P ∗

mode
and p∧ can be

neglected. Consequently, Equation (5) splits into
two parts. First of them given by






dqx

dt
dpx

dt




=

[
0 d
d 0

][
∗cxqx

∗µ−1px

]

, (6)



cxqx|s=0 = F 0

x ,

cxqx|s=S = FS
x ,

µ−1px|s=0 = v0

x,

µ−1px|s=S = vS
x ,

describes the longitudinal motion of the beam and
has the form of the rod equation. The second of
them given by












dqθ

dt
dqy

dt
dpθ

dt
dpy

dt












=







0 0 d 0
0 0 −∗ d
d ∗ 0 0
0 d 0 0













∗cθqθ

∗cyqy

∗ι−1pθ

∗µ−1py






, (7)

cθqθ|s=0 = M0, cθqθ|s=S = MS ,

cyqy|s=0 = F 0

y , cyqy|s=S = FS
y ,

ι−1pθ|s=0 = ω0, ι−1pθ|s=S = ωS ,

µ−1py|s=0 = v0

y, µ−1py|s=S = vS
y .

describes the transversal motion of the beam and
has the form of the Timoshenko beam model (see
(Golo et al., 2002) for details).

4. CONCLUSION

In this paper, the dynamical model describing the
beam with large deviations has been derived. It
has been proved that the obtained model corre-
sponds to a port-Hamiltonian system with modu-
lated interconnection structure. If usual assump-
tions from linear beam theory apply then the ob-
tained model can be split into two parts. The first
part describes longitudinal motion (wave equa-
tions) and the second part represents transversal
motion (Timoshenko beam model).

Extension of the obtained model for planar beams
to three dimensional beams is straightforward. A
three dimensional beam would be described by
Equation (5) where p and q are six dimensional
vectors, and C, M , Adn

b (s) are six dimensional
matrices or even geometrically using Lie-algebra
valued forms.

Future work will be focused on spatial discretiza-
tion of the obtained model such that the energetic
port-structure of the system is preserved. Also the
proposed methodology for modeling beams will be
applied to flexible shells and plates.
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